Compliant Control of Lower Limb Rehabilitation Exoskeleton Robot Based on Flexible Transmission

被引:8
|
作者
Liu, Keping [1 ,2 ]
Li, Li [1 ]
Li, Wanting [1 ]
Gu, Jian [1 ]
Sun, Zhongbo [1 ]
机构
[1] Changchun Univ Technol, Dept Control Sci & Engn, Changchun 130012, Peoples R China
[2] Jilin Engn Normal Univ, Dept Elect & Informat Engn, Changchun 130052, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lower limb rehabilitation exoskeleton; Flexible control; Impedance control; Stability; IMPEDANCE CONTROL;
D O I
10.1007/s42235-022-00302-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To ensure the safety, comfort, and effectiveness of lower limb rehabilitation exoskeleton robots in the rehabilitation training process, compliance is a prerequisite for human-machine interaction safety. First, under the premise of considering the mechanical structure of the lower limb rehabilitation exoskeleton robot (LLRER), when conducting the dynamic transmission of the exoskeleton knee joint, the soft axis is added to ensure that the rotation motion and torque are flexibly transmitted to any position to achieve flexible force transmission. Second, to realize the active compliance control of LLRER, the sliding mode impedance closed-loop controller is developed based on the kinematics and dynamics model of LLRER, and the stability of the designed control system is verified by Lyapunov method. Then the experiment is designed to track the collected bicycle rehabilitation motion data stably, and the algorithm and dynamic model are verified to satisfy the experimental requirements. Finally, aiming at the transmission efficiency and response performance of the soft shaft in the torque transmission process of the knee joint, the soft shaft transmission performance test is carried out to test the soft shaft transmission performance and realize the compliance of the LLRER, so as to ensure that the rehabilitation training can be carried out in a safe and comfortable interactive environment. Through the design of rehabilitation exercise training, it is verified that the LLRER of flexible transmission under sliding mode impedance control has good adaptability in the actual environment, and can achieve accurate and flexible control. During the experiment, the effectiveness of monitoring rehabilitation training is brought through the respiratory belt.
引用
收藏
页码:1021 / 1035
页数:15
相关论文
共 50 条
  • [21] Admittance Control of Lower Limb Exoskeleton Robot
    Jiang, Chaochao
    Wang, Fei
    Zhao, Lihong
    Wu, Han
    Shi, Ketao
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1131 - 1135
  • [22] Adaptive patient-cooperative compliant control of lower limb rehabilitation robot
    Chen L.
    Huang J.
    Wang Y.
    Guo S.
    Wang M.
    Guo X.
    Biomimetic Intelligence and Robotics, 2024, 4 (02):
  • [23] Electrically Driven Lower Limb Exoskeleton Rehabilitation Robot Based on Anthropomorphic Design
    Gao, Moyao
    Wang, Zhanli
    Pang, Zaixiang
    Sun, Jianwei
    Li, Jing
    Li, Shuang
    Zhang, Hansi
    MACHINES, 2022, 10 (04)
  • [24] Design of a Compliant Joint Actuator for Lower-limb Exoskeleton Robot
    Huang, Chao
    Chen, Weihai
    Liu, Jingmeng
    Zhang, Jianbin
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 1522 - 1527
  • [25] Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition
    Su, Dongnan
    Hu, Zhigang
    Wu, Jipeng
    Shang, Peng
    Luo, Zhaohui
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [26] Design and Research of Series Actuator Structure and Control System Based on Lower Limb Exoskeleton Rehabilitation Robot
    Zhao, Chenglong
    Liu, Zhen
    Zhu, Liucun
    Wang, Yuefei
    ACTUATORS, 2024, 13 (01)
  • [27] Flexible assistance strategy of lower limb rehabilitation exoskeleton based on admittance model
    Kou, JianGe
    Wang, YiXuan
    Chen, ZhenLei
    Shi, Yan
    Guo, Qing
    Xu, Meng
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (03) : 823 - 834
  • [28] Flexible assistance strategy of lower limb rehabilitation exoskeleton based on admittance model
    JianGe Kou
    YiXuan Wang
    ZhenLei Chen
    Yan Shi
    Qing Guo
    Meng Xu
    Science China Technological Sciences, 2024, 67 : 823 - 834
  • [29] Flexible assistance strategy of lower limb rehabilitation exoskeleton based on admittance model
    KOU JianGe
    WANG YiXuan
    CHEN ZhenLei
    SHI Yan
    GUO Qing
    XU Meng
    Science China Technological Sciences, 2024, (03) : 823 - 834
  • [30] A Rehabilitation Training Interactive Method for Lower Limb Exoskeleton Robot
    Fang, Qianqian
    Xu, Tian
    Zheng, Tianjiao
    Cai, Hegao
    Zhao, Jie
    Zhu, Yanhe
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022