New geometric magnetic energy according to geometric Frenet formulas

被引:0
|
作者
Ekinci, Alper [1 ]
Bas, Selcuk [1 ]
Korpinar, Talat [2 ]
Korpinar, Zeliha [3 ]
机构
[1] Bandirma Onyedi Eylul Univ, Bandirma Vocat Sch, Balikesir, Turkiye
[2] Mus Alparslan Univ, Dept Math, TR-49250 Mus, Turkiye
[3] Mus Alparslan Univ, Dept Adm, TR-49250 Mus, Turkiye
关键词
Optical geometric frame; Geometric calculus; Geometric magnetic curves; VECTOR-FIELDS; CURVES;
D O I
10.1007/s11082-023-05569-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet-Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Truncation Formulas for Invariant Polynomials of Matroids and Geometric Lattices
    Relinde Jurrius
    Ruud Pellikaan
    Mathematics in Computer Science, 2012, 6 (2) : 121 - 133
  • [32] Geometric formulas for Smale invariants of codimension two immersions
    Ekholm, T
    Szücs, A
    TOPOLOGY, 2003, 42 (01) : 171 - 196
  • [33] Two geometric character formulas for reductive Lie groups
    Schmid, W
    Vilonen, K
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (04) : 799 - 867
  • [34] Minimum weight and dimension formulas for some geometric codes
    Calkin, NJ
    Key, JD
    De Resmini, MJ
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 17 (1-3) : 105 - 120
  • [35] Geometric measure theory formulas on rectifiable metric spaces
    Karmanova, Maria
    INTERACTION OF ANALYSIS AND GEOMETRY, 2007, 424 : 103 - 136
  • [36] Energetic, geometric, and magnetic criteria
    von, R. Schleyer, P.
    Freeman, P.K.
    Jiao, H.
    Goldfuss, B.
    Angewandte Chemie (International Edition in English), 1995, 34 (03): : 337 - 340
  • [37] Geometric magnetic frustration in olivines
    Hagemann, IS
    Khalifah, PG
    Ramirez, AP
    Cava, RJ
    PHYSICAL REVIEW B, 2000, 62 (02): : R771 - R774
  • [38] New geometric flows
    Tian, Gang
    NATIONAL SCIENCE REVIEW, 2018, 5 (04) : 534 - 541
  • [39] New geometric flows
    Gang Tian
    National Science Review, 2018, 5 (04) : 534 - 541
  • [40] Energy structure of curved magnetic surfaces and its relationship with geometric phase
    Balakrishnan, R
    Saxena, A
    PHYSICAL REVIEW B, 1998, 58 (21): : 14383 - 14386