Bimodal Camera Pose Prediction for Endoscopy

被引:4
|
作者
Rau, Anita [1 ,2 ]
Bhattarai, Binod [1 ,3 ]
Agapito, Lourdes [1 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Comp Sci Dept, London WC1E 6BT, England
[2] Stanford Univ, Biomed Data Sci Dept, Stanford, CA 94305 USA
[3] Univ Aberdeen, Sch Nat & Comp Sci, Aberdeen AB24 3FX, Scotland
来源
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
3D reconstruction; camera pose estimation; endoscopy; SLAM; surgical AI; COLONOSCOPY;
D O I
10.1109/TMRB.2023.3320267
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deducing the 3D structure of endoscopic scenes from images is exceedingly challenging. In addition to deformation and view-dependent lighting, tubular structures like the colon present problems stemming from their self-occluding and repetitive anatomical structure. In this paper, we propose SimCol, a synthetic dataset for camera pose estimation in colonoscopy, and a novel method that explicitly learns a bimodal distribution to predict the endoscope pose. Our dataset replicates real colonoscope motion and highlights the drawbacks of existing methods. We publish 18k RGB images from simulated colonoscopy with corresponding depth and camera poses and make our data generation environment in Unity publicly available. We evaluate different camera pose prediction methods and demonstrate that, when trained on our data, they generalize to real colonoscopy sequences, and our bimodal approach outperforms prior unimodal work. Our project and dataset can be found here: https://www.github.com/anitarau/simcol.
引用
收藏
页码:978 / 989
页数:12
相关论文
共 50 条
  • [31] DiffPoseNet: Direct Differentiable Camera Pose Estimation
    Parameshwara, Chethan M.
    Hari, Gokul
    Fermuller, Cornelia
    Sanket, Nitin J.
    Aloimonos, Yiannis
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6835 - 6844
  • [32] LEDs based video camera pose estimation
    Sudars, K.
    Cacurs, R.
    Homjakovs, I.
    Judvaitis, J.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2015, 63 (04) : 897 - 905
  • [33] Determining camera pose from corresponding conics
    Wu, Fu-Chao
    Hu, Zhan-Yi
    Jisuanji Xuebao/Chinese Journal of Computers, 2002, 25 (11): : 1157 - 1164
  • [34] Relative Pose Calibration of a Spherical Camera and an IMU
    Hol, Jeroen D.
    Schon, Thomas B.
    Gustafsson, Fredrik
    7TH IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY 2008, PROCEEDINGS, 2008, : 21 - +
  • [35] Camera pose estimation based on distorted lines
    Li, Tao
    Guan, Banglei
    Sun, Fang
    Sun, Cong
    Shang, Yang
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 173 - 179
  • [36] Combining Kinect and PnP for Camera Pose Estimation
    Zhang, Shu
    Yu, Hui
    Dong, Junyu
    Wang, Ting
    Qv, Lin
    Liu, Honghai
    2015 8TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTIONS (HSI), 2015, : 357 - 361
  • [37] Camera parameters estimation from pose detections
    Shalimova, E. A.
    Shalnov, E., V
    Konushin, A. S.
    COMPUTER OPTICS, 2020, 44 (03) : 385 - 392
  • [38] Multi-camera head pose estimation
    Rafael Muñoz-Salinas
    E. Yeguas-Bolivar
    A. Saffiotti
    R. Medina-Carnicer
    Machine Vision and Applications, 2012, 23 : 479 - 490
  • [39] Camera Pose Estimation with Unknown Principal Point
    Larsson, Viktor
    Kukelova, Zuzana
    Zheng, Yinqiang
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2984 - 2992
  • [40] Driver head pose tracking with thermal camera
    Bole, S.
    Fournier, C.
    Lavergne, C.
    Labrevois, P.
    Druart, G.
    Lepine, T.
    INFRARED SENSORS, DEVICES, AND APPLICATIONS VI, 2016, 9974