Bayesian estimation of the binomial parameter in sequential experiments

被引:0
|
作者
Bunouf, Pierre [1 ,2 ]
机构
[1] Labs Pierre Fabre, Toulouse, France
[2] Labs Pierre Fabre, 3 Ave Hubert Curien, F-31000 Toulouse, France
关键词
Objective Bayesian estimation; binomial parameter; sequential experiment; reference prior theory; Jeffreys' criterion; credible interval; frequentist properties; CONFIDENCE-INTERVALS; TRIALS; INFERENCE; BENEFIT; DESIGN;
D O I
10.1177/09622802231199160
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This article presents an objective Bayesian approach to estimating the binomial parameter in group sequential experiments with a binary endpoint. The idea of deriving design-dependent priors was first introduced using Jeffreys criterion. Another class of priors was developed based on the reference prior theory. A theoretical framework was established showing that explicit reference to the experimental design in the prior is fully Bayesian justified. Using a design-dependent prior which generalizes the reference prior, I propose a comprehensive and unified approach to the point and the interval estimations in group sequential experiments, and I evidence the good frequentist properties of the posterior estimators through comparative studies with the existing methods. The effect of the prior correction on the posterior estimates is studied in three classical designs of clinical trials. Finally, I discuss the idea of using this approach as a default choice for estimation upon sequential experiment termination.
引用
收藏
页码:2158 / 2171
页数:14
相关论文
共 50 条
  • [31] BAYESIAN SEQUENTIAL ESTIMATION
    ALVO, M
    ANNALS OF STATISTICS, 1977, 5 (05): : 955 - 968
  • [32] ESTIMATION OF PARAMETER N IN BINOMIAL DISTRIBUTION
    FELDMAN, D
    FOX, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1968, 63 (321) : 150 - &
  • [33] Estimation of the Parameter of the Selected Binomial Population
    Al-Mosawi, Riyadh R.
    Vellaisamy, P.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (22) : 4796 - 4811
  • [34] INTERVAL ESTIMATION FOR THE PARAMETER OF A BINOMIAL DISTRIBUTION
    CLUNIESROSS, CW
    BIOMETRIKA, 1958, 45 (1-2) : 275 - 279
  • [35] SEQUENTIAL DESIGN OF COMPUTER EXPERIMENTS FOR PARAMETER ESTIMATION WITH APPLICATION TO NUMERICAL DOSIMETRY
    Jala, Marjorie
    Levy-Leduc, Celine
    Moulines, Eric
    Conil, Emmanuelle
    Wiart, Joe
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 909 - 913
  • [36] Iterative improvement of parameter estimation for model migration by means of sequential experiments
    Luo, Linkai
    Yao, Yuan
    Gao, Furong
    COMPUTERS & CHEMICAL ENGINEERING, 2015, 73 : 128 - 140
  • [37] EMPIRICAL BAYES ESTIMATION OF BINOMIAL PARAMETER
    MARTZ, HF
    LIAN, MG
    BIOMETRIKA, 1974, 61 (03) : 517 - 523
  • [38] POINT ESTIMATION OF PARAMETER OF BINOMIAL DISTRIBUTION
    CHEW, V
    AMERICAN STATISTICIAN, 1971, 25 (05): : 47 - &
  • [39] Beyond Binomial and Negative Binomial: Adaptation in Bernoulli Parameter Estimation
    Medin, Safa C.
    Murray-Bruce, John
    Castanon, David
    Goyal, Vivek K.
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2019, 5 (04) : 570 - 584
  • [40] A Possibilistic View of Binomial Parameter Estimation
    Mauris, Gilles
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, PT I, 2014, 442 : 396 - 405