Ferroelectric composite-based piezoelectric energy harvester for self-powered detection of obstructive sleep

被引:23
|
作者
Panda, Swati [1 ]
Shin, Hyoju [1 ]
Hajra, Sugato [1 ]
Oh, Yumi [1 ]
Oh, Wonjeong [1 ]
Lee, Jeonghyeon [1 ]
Rajaitha, P. M. [1 ]
Panigrahi, Basanta Kumar [2 ]
Shukla, Jyoti [3 ]
Sahu, Alok Kumar [4 ]
Alagarsamy, Perumal [4 ]
Kim, Hoe Joon [1 ,5 ,6 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Robot & Mechatron Engn, Daegu 42988, South Korea
[2] Siksha O Anusandhan Univ, Dept Elect Engn, Bhubaneswar 751030, India
[3] Poornima Coll Engn, Dept Elect Engn, Jaipur 303903, India
[4] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India
[5] Daegu Gyeongbuk Inst Sci & Technol DGIST, Robot & Mechatron Res Ctr, Daegu 42988, South Korea
[6] DGIST, Dept Robot & Mechatron Engn, Bldg E5, Daegu 42988, South Korea
基金
新加坡国家研究基金会;
关键词
Lead-free; Ferroelectric; Nanogenerator; Sleep disorder; OUTPUT; FILMS; PZT;
D O I
10.1016/j.jmat.2023.01.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead-free piezoelectric ceramic is a promising material for energy harvesters, as they have superior electromechanical, ferroelectric, and piezoelectric properties. In addition, piezoelectric ceramics can be blended with polymer to achieve high-flexibility polymer-ceramic composites, providing mechanical robustness and stability. In this context, a new lead-free ferroelectric material, having the chemical formula SrTi2O5 (STO), was synthesized using a high-temperature solid-state reaction. Detailed analyses of the structural, morphological, and electrical properties of the synthesized material were performed. STO crystallizes with orthorhombic symmetry and space group of Cmm2. The frequency and temperature-dependent dielectric parameters were evaluated, and impedance spectroscopy shed light on the charge dynamics. The PDMS-STO composites at different mass fraction of the STO were prepared using a solvent casting route, and a corresponding piezoelectric nanogenerator (PENG) was developed. The electrical output of the different PENG by varying massfractions of STO in PDMS and varying force were investigated. The 15% (in mass) PENG device delivered the highest peak-to-peak voltage, current, and power density of 25 V, 92 nA, and 0.64 mW @ 500 MU, respectively. The biomechanical energy harvesting using the PENG device by daily human motions, bending of the device, and attaching the device to laboratory equipment was demonstrated. Later the PENG device was attached to the human throat region, and snoring signals were recorded. A classification model was designed employing the convolutional neural network (CNN) model. Efforts have been laid to differentiate between normal and abnormal snores, which could help the patient with screening and early disease detection, contributing to self-powered healthcare applications.& COPY; 2023 The Authors. Published by Elsevier B.V. on behalf of The Chinese Ceramic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:609 / 617
页数:9
相关论文
共 50 条
  • [21] Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester
    Le Scornec, Julien
    Guiffard, Benoit
    Seveno, Raynald
    Le Cam, Vincent
    Ginestar, Stephane
    RENEWABLE ENERGY, 2022, 184 : 551 - 563
  • [22] Autoparametric Excitation and Self-powered SSHI for Power Enhancement in Piezoelectric Vibration Energy Harvester
    Asanuma, H.
    Komatsuzaki, T.
    Iwata, Y.
    17TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2017), 2018, 1052
  • [23] Ternary ordered assembled piezoelectric composite for self-powered ammonia detection
    Li, Yi
    Li, Weixiong
    Jin, Ziyang
    Luo, Xiaolan
    Xie, Guangzhong
    Tai, Huiling
    Jiang, Yadong
    Yang, Yajie
    Su, Yuanjie
    NANO ENERGY, 2024, 122
  • [24] Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester
    Kim, Geon Su
    Jang, Ji-un
    Kim, Seong Yun
    COMPOSITES RESEARCH, 2021, 34 (06): : 357 - 372
  • [25] MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices
    Shi, Qiongfeng
    Wang, Tao
    Lee, Chengkuo
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Highly Flexible P(VDF-TrFE) Film-Based Piezoelectric Self-Powered Energy Harvester
    Kim, Soaram
    Towfeeq, Itmenon
    Bayram, Ferhat
    Khan, Digangana
    Kolev, Goutam
    2016 IEEE SENSORS, 2016,
  • [27] MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices
    Qiongfeng Shi
    Tao Wang
    Chengkuo Lee
    Scientific Reports, 6
  • [28] A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester
    Shi, Shuxin
    Yue, Qiuqin
    Zhang, Zuwei
    Yuan, Jun
    Zhou, Jielin
    Zhang, Xiaokun
    Lu, Shan
    Luo, Xin
    Shi, Chongyu
    Yu, Hua
    MICROMACHINES, 2018, 9 (12):
  • [29] A Self-Powered Electronic Interface for Electromagnetic Energy Harvester
    Dallago, Enrico
    Danioni, Alberto
    Marchesi, Marco
    Nucita, Valeria
    Venchi, Giuseppe
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (11) : 3174 - 3182
  • [30] Hybrid Piezoelectric-Triboelectric Vibration Energy Harvester for Intelligent Bearing Self-Powered System
    Luo M.
    Xueliang Z.
    Zhaoqi Y.
    Heng W.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (03): : 173 - 182