New Variants of the Multi-Verse Optimizer Algorithm Adapting Chaos Theory in Benchmark Optimization

被引:2
|
作者
Amezquita, Lucio [1 ]
Castillo, Oscar [1 ]
Soria, Jose [1 ]
Cortes-Antonio, Prometeo [1 ]
机构
[1] TecNM, Tijuana Inst Technol, Calzada Tecnol S-N, Tijuana 22414, Mexico
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
FCMVO; multiverse optimizer; chaotic maps; fuzzy logic; optimization; benchmark; functions; random; Mamdani; Sugeno; dynamic adaptation; BIOGEOGRAPHY-BASED OPTIMIZATION;
D O I
10.3390/sym15071319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we present multiple variations of the Multi-verse Optimizer Algorithm (MVO) using chaotic maps, using it in the formation of new solutions. In these new variations of the MVO algorithm, which we call the Fuzzy-Chaotic Multi-verse Optimizer (FCMVO), we use multiple chaotic maps used in the literature to substitute some of the parameters for which the original algorithm used a random value in the formation of new universes or solutions. To implement chaos theory on these new variants, we also use Fuzzy Logic for dynamic parameter adaptation; the first tests are performed only using chaotic maps, and then we merge the use of Fuzzy Logic in each of these cases to analyze the improvement over the Fuzzy MVO. Subsequently, we use only the best-performing chaos maps in a new set of variants for the same cases; after these results, we observe the behavior of the algorithm in different cases. The objective of this study is to compare whether there is a significant improvement over the MVO algorithm using some of the best-performing chaotic maps in conjunction with Fuzzy Logic in benchmark mathematical functions prior to moving on to other case studies.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Optimal design of a multistage slope using the multi-verse optimization algorithm
    Fan, Pingyang
    Chen, Junhua
    Chen, Junwen
    Shen, Xuhui
    Wang, Min
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [32] Chaotic multi-verse optimizer-based feature selection
    Ahmed A. Ewees
    Mohamed Abd El Aziz
    Aboul Ella Hassanien
    Neural Computing and Applications, 2019, 31 : 991 - 1006
  • [33] Multi-group multi-verse optimizer for energy efficient for routing algorithm in wireless sensor network
    Jia, Han-Dong
    Li, Wei
    Pan, Jeng-Shyang
    Chai, Qing-Wei
    Chu, Shu-Chuan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (02) : 2135 - 2146
  • [34] K-Means Multi-Verse Optimizer (KMVO) Algorithm to Construct DNA Storage Codes
    Cao, Ben
    Zhao, Sue
    Li, Xue
    Wang, Bin
    IEEE ACCESS, 2020, 8 : 29547 - 29556
  • [35] Multi-verse optimizer for identifying the optimal parameters of PEMFC model
    Fathy, Ahmed
    Rezk, Hegazy
    ENERGY, 2018, 143 : 634 - 644
  • [36] A solution to the optimal power flow using multi-verse optimizer
    Bentouati, Bachir
    Chettih, Saliha
    Jangir, Pradeep
    Trivedi, Indrajit N.
    JOURNAL OF ELECTRICAL SYSTEMS, 2016, 12 (04) : 716 - 733
  • [37] Chaotic multi-verse optimizer-based feature selection
    Ewees, Ahmed A.
    Abd El Aziz, Mohamed
    Hassanien, Aboul Ella
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (04): : 991 - 1006
  • [38] A Parallel Multi-Verse Optimizer for Application in Multilevel Image Segmentation
    Wang, Xiaopeng
    Pan, Jeng-Shyang
    Chu, Shu-Chuan
    IEEE ACCESS, 2020, 8 : 32018 - 32030
  • [39] Maximizing energy storage in Microgrids with an amended multi-verse optimizer
    Hu, Qingpu
    Zhao, Guoxin
    Hu, Jian
    Razmjooy, Navid
    HELIYON, 2023, 9 (11)
  • [40] Optimizing time and cost simultaneously in projects with multi-verse optimizer
    Son P.V.H.
    Nguyen Dang N.T.
    Asian Journal of Civil Engineering, 2023, 24 (7) : 2443 - 2449