New Variants of the Multi-Verse Optimizer Algorithm Adapting Chaos Theory in Benchmark Optimization

被引:2
|
作者
Amezquita, Lucio [1 ]
Castillo, Oscar [1 ]
Soria, Jose [1 ]
Cortes-Antonio, Prometeo [1 ]
机构
[1] TecNM, Tijuana Inst Technol, Calzada Tecnol S-N, Tijuana 22414, Mexico
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
FCMVO; multiverse optimizer; chaotic maps; fuzzy logic; optimization; benchmark; functions; random; Mamdani; Sugeno; dynamic adaptation; BIOGEOGRAPHY-BASED OPTIMIZATION;
D O I
10.3390/sym15071319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we present multiple variations of the Multi-verse Optimizer Algorithm (MVO) using chaotic maps, using it in the formation of new solutions. In these new variations of the MVO algorithm, which we call the Fuzzy-Chaotic Multi-verse Optimizer (FCMVO), we use multiple chaotic maps used in the literature to substitute some of the parameters for which the original algorithm used a random value in the formation of new universes or solutions. To implement chaos theory on these new variants, we also use Fuzzy Logic for dynamic parameter adaptation; the first tests are performed only using chaotic maps, and then we merge the use of Fuzzy Logic in each of these cases to analyze the improvement over the Fuzzy MVO. Subsequently, we use only the best-performing chaos maps in a new set of variants for the same cases; after these results, we observe the behavior of the algorithm in different cases. The objective of this study is to compare whether there is a significant improvement over the MVO algorithm using some of the best-performing chaotic maps in conjunction with Fuzzy Logic in benchmark mathematical functions prior to moving on to other case studies.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Multi-Verse Optimizer: a nature-inspired algorithm for global optimization
    Mirjalili, Seyedali
    Mirjalili, Seyed Mohammad
    Hatamlou, Abdolreza
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (02): : 495 - 513
  • [2] Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications
    Abualigah, Laith
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16): : 12381 - 12401
  • [3] Multi-Verse Optimizer: a nature-inspired algorithm for global optimization
    Seyedali Mirjalili
    Seyed Mohammad Mirjalili
    Abdolreza Hatamlou
    Neural Computing and Applications, 2016, 27 : 495 - 513
  • [4] Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications
    Abualigah, Laith
    Neural Computing and Applications, 2020, 32 (16) : 12381 - 12401
  • [5] Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications
    Laith Abualigah
    Neural Computing and Applications, 2020, 32 : 12381 - 12401
  • [6] A novel hybrid multi-verse optimizer with queuing search algorithm
    Wang, Yuan
    Yu, Xiaobing
    Wang, Xuming
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (06) : 9821 - 9845
  • [7] Design optimization of a SRM motor by a nature-inspired algorithm : Multi-Verse Optimizer
    Pei, Yunqing
    Zhao, Shiwei
    Yang, Xiangyu
    Cao, Jianghua
    Gong, Yang
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 1870 - 1875
  • [8] Modified Multi-Verse Optimizer for Solving Numerical Optimization Problems
    Jui, Julakha Jahan
    Ahmad, Mohd Ashraf
    Rashid, Muhammad Ikram Mohd
    2020 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS 2020), 2020, : 81 - 86
  • [9] AN IMPROVED MULTI-VERSE OPTIMIZER ALGORITHM FOR MULTI-SOURCE ALLOCATION PROBLEM
    Song, Ruixing
    Zeng, Xuewen
    Han, Rui
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2020, 16 (06): : 1845 - 1862
  • [10] A new chaotic multi-verse optimization algorithm for solving engineering optimization problems
    Sayed, Gehad Ismail
    Darwish, Ashraf
    Hassanien, Aboul Ella
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2018, 30 (02) : 293 - 317