A Closed-Loop Shared Control Framework for Legged Robots

被引:7
|
作者
Xu, Peng [1 ]
Wang, Zhikai [1 ]
Ding, Liang [1 ]
Li, Zhengyang [1 ]
Shi, Junyi [2 ]
Gao, Haibo [1 ]
Liu, Guangjun [3 ]
Huang, Yanlong [4 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
[2] Aalto Univ, Dept Elect Engn & Automat, Espoo 00076, Finland
[3] Toronto Metropolitan Univ, Dept Aerosp Engn, Toronto, ON M5B 2K3, Canada
[4] Univ Leeds, Sch Comp, Leeds LS29JT, England
基金
中国国家自然科学基金;
关键词
Robots; Legged locomotion; Robot kinematics; Costs; Robot sensing systems; Planning; Collision avoidance; Legged robots; motion planning; shared control; INTERFACE;
D O I
10.1109/TMECH.2023.3270527
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Shared control, as a combination of human and robot intelligence, has been deemed as a promising direction toward complementing the perception and learning capabilities of legged robots. However, previous works on human-robot control for legged robots are often limited to simple tasks, such as controlling movement direction, posture, or single-leg motion, yet extensive training of the operator is required. To facilitate the transfer of human intelligence to legged robots in unstructured environments, this article presents a user-friendly closed-loop shared control framework. The main novelty is that the operator only needs to make decisions based on the recommendations of the autonomous algorithm, without having to worry about operations or consider contact planning issues. Specifically, a rough navigation path from the operator is smoothed and optimized to generate a path with reduced traversing cost. The traversability of the generated path is assessed using fast Monte Carlo tree search, which is subsequently fed back through an intuitive image interface and force feedback to help the operator make decisions quickly, forming a closed-loop shared control. The simulation and hardware experiments on a hexapod robot show that the proposed framework gives full play to the advantages of human-machine collaboration and improves the performance in terms of learning time from the operator, mission completion time, and success rate than comparison methods.
引用
收藏
页码:190 / 201
页数:12
相关论文
共 50 条
  • [41] Closed-loop control of artificial respiration
    Tehrani, FT
    Roum, JH
    WESCON - 96, CONFERENCE PROCEEDINGS, 1996, : 253 - 258
  • [42] A MICROCONTROLLER FOR CLOSED-LOOP MOTION CONTROL
    DALAY, BS
    PARKIN, RM
    MICROPROCESSORS AND MICROSYSTEMS, 1991, 15 (09) : 473 - 480
  • [43] Closed-loop control of propofol anaesthesia
    Kenny, GNC
    Mantzaridis, H
    BRITISH JOURNAL OF ANAESTHESIA, 1999, 83 (02) : 223 - 228
  • [44] Multitasked closed-loop control in anesthesia
    Gentilini, A
    Frei, CW
    Glattfedler, AH
    Morari, M
    Sieber, TJ
    Wymann, R
    Schnider, TW
    Zbinden, AM
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (01): : 39 - 53
  • [45] Closed-loop control of analgesia in humans
    Gentilini, A
    Morari, M
    Bieniok, C
    Wymann, R
    Schnider, TW
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 861 - 866
  • [46] Closed-Loop Stall Control System
    Poggie, Jonathan
    Tilmann, Carl P.
    Flick, Peter M.
    Silkey, Joseph S.
    Osborne, Bradley A.
    Ervin, Gregory
    Maric, Dragan
    JOURNAL OF AIRCRAFT, 2010, 47 (05): : 1747 - 1755
  • [47] METHOD OF CLOSED-LOOP DIGITAL CONTROL
    MONTGOMERIE, GA
    KEELING, GW
    MAY, D
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1969, 116 (08): : 1445 - +
  • [48] A closed-loop micromotor control system
    Purushotham, A
    Garverick, SL
    Edwards, C
    Nagy, ML
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 4, 1996, : 209 - 212
  • [49] CLOSED-LOOP PHYSIOLOGICAL CONTROL OF THE HEART
    SAGAWA, K
    ANNALS OF BIOMEDICAL ENGINEERING, 1980, 8 (4-6) : 415 - 429
  • [50] Closed-Loop Control of Plasma Osmolality
    Zaarouri, Kamel
    Haidar, Ahmad
    Boulet, Benoit
    BRAIN, BODY AND MACHINE, 2010, 83 : 217 - 225