Deep learning based brain MRI registration driven by local-signed-distance fields of segmentation maps

被引:5
|
作者
Yang, Yue [1 ]
Hu, Shunbo [1 ]
Zhang, Lintao [1 ]
Shen, Dinggang [2 ]
机构
[1] Linyi Univ, Sch Informat Sci & Engn, Linyi, Shandong, Peoples R China
[2] ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
关键词
deep learning; local-signed-distance fields; medical image registration; DEFORMABLE IMAGE REGISTRATION;
D O I
10.1002/mp.16291
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundDeep learning based unsupervised registration utilizes the intensity information to align images. To avoid the influence of intensity variation and improve the registration accuracy, unsupervised and weakly-supervised registration are combined, namely, dually-supervised registration. However, the estimated dense deformation fields (DDFs) will focus on the edges among adjacent tissues when the segmentation labels are directly used to drive the registration progress, which will decrease the plausibility of brain MRI registration. PurposeIn order to increase the accuracy of registration and ensure the plausibility of registration at the same time, we combine the local-signed-distance fields (LSDFs) and intensity images to dually supervise the registration progress. The proposed method not only uses the intensity and segmentation information but also uses the voxelwise geometric distance information to the edges. Hence, the accurate voxelwise correspondence relationships are guaranteed both inside and outside the edges. MethodsThe proposed dually-supervised registration method mainly includes three enhancement strategies. Firstly, we leverage the segmentation labels to construct their LSDFs to provide more geometrical information for guiding the registration process. Secondly, to calculate LSDFs, we construct an LSDF-Net, which is composed of 3D dilation layers and erosion layers. Finally, we design the dually-supervised registration network (VMLSDF) by combining the unsupervised VoxelMorph (VM) registration network and the weakly-supervised LSDF-Net, to utilize intensity and LSDF information, respectively. ResultsIn this paper, experiments were then carried out on four public brain image datasets: LPBA40, HBN, OASIS1, and OASIS3. The experimental results show that the Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD) of VMLSDF are higher than those of the original unsupervised VM and the dually-supervised registration network (VMseg) using intensity images and segmentation labels. At the same time, the percentage of negative Jacobian determinant (NJD) of VMLSDF is lower than VMseg. Our code is freely available at https://github.com/1209684549/LSDF. ConclusionsThe experimental results show that LSDFs can improve the registration accuracy compared with VM and VMseg, and enhance the plausibility of the DDFs compared with VMseg.
引用
收藏
页码:4899 / 4915
页数:17
相关论文
共 50 条
  • [31] Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches
    Al Shehri, Waleed
    Jannah, Najlaa
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (08): : 343 - 351
  • [32] Interinstitutional Portability of a Deep Learning Brain MRI Lesion Segmentation Algorithm
    Rauschecker, Andreas M.
    Gleason, Tyler J.
    Nedelec, Pierre
    Duong, Michael Tran
    Weiss, David A.
    Calabrese, Evan
    Colby, John B.
    Sugrue, Leo P.
    Rudie, Jeffrey D.
    Hess, Christopher P.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (01)
  • [33] Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
    Zeynettin Akkus
    Alfiia Galimzianova
    Assaf Hoogi
    Daniel L. Rubin
    Bradley J. Erickson
    Journal of Digital Imaging, 2017, 30 : 449 - 459
  • [34] TuMore: Generation of Synthetic Brain Tumor MRI Data for Deep Learning Based Segmentation Approaches
    Lindner, Lydia
    Pfarrkirchner, Birgit
    Gsaxner, Christina
    Schmalstieg, Dieter
    Egger, Jan
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
  • [35] Accurate MRI-Based Brain Tumor Diagnosis: Integrating Segmentation and Deep Learning Approaches
    Ashimgaliyev, Medet
    Matkarimov, Bakhyt
    Barlybayev, Alibek
    Li, Rita Yi Man
    Zhumadillayeva, Ainur
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [36] Automated Brain Tumor Segmentation and Classification in MRI Using YOLO-Based Deep Learning
    Almufareh, Maram Fahaad
    Imran, Muhammad
    Khan, Abdullah
    Humayun, Mamoona
    Asim, Muhammad
    IEEE ACCESS, 2024, 12 : 16189 - 16207
  • [37] Automated segmentation of pediatric brain tumors based on multi-parametric MRI and deep learning
    Madhogarhia, Rachel
    Kazerooni, Anahita Fathi
    Arif, Sherjeel
    Ware, Jeffrey B.
    Familiar, Ariana M.
    Vidal, Lorenna
    Bagheri, Sina
    Anderson, Hannah
    Haldar, Debanjan
    Yagoda, Sophie
    Graves, Erin
    Spadola, Michael
    Yan, Rachel
    Dahmane, Nadia
    Sako, Chiharu
    Vossough, Arastoo
    Storm, Phillip
    Resnick, Adam
    Davatzikos, Christos
    Nabavizadeh, Ali
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [38] Deep Learning Based Ensemble Approach for 3D MRI Brain Tumor Segmentation
    Tien-Bach-Thanh Do
    Dang-Linh Trinh
    Minh-Trieu Tran
    Lee, Guee-Sang
    Kim, Soo-Hyung
    Yang, Hyung-Jeong
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 210 - 221
  • [39] MRI segmentation using deep learning network for brain tumour detection
    Ambily, N.
    Suresh, K.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 43 (04) : 378 - 389
  • [40] Deep Learning Methods for MRI Brain Tumor Segmentation: a comparative study
    Brahim, Ikram
    Fourer, Dominique
    Vigneron, Vincent
    Maaref, Hichem
    2019 NINTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2019,