Preparation and Characterization of Poly(Acrylic Acid)-Based Self-Healing Hydrogel for 3D Shape Fabrication via Extrusion-Based 3D Printing

被引:5
|
作者
Shin, Woohyeon [1 ,2 ]
Chung, Kyeongwoon [1 ]
机构
[1] Kyungpook Natl Univ, Dept Biofibers & Biomat Sci, Daegu 41566, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Mat Sci & Engn, Ulsan 44919, South Korea
关键词
poly(acrylic acid); extrusion-based 3D printing; hydrogel; self-healing polymer; rheological characteristics; DRUG-RELEASE;
D O I
10.3390/ma16052085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The three-dimensional (3D) printing of hydrogel is an issue of interest in various applications to build optimized 3D structured devices beyond 2D-shaped conventional structures such as film or mesh. The materials design for the hydrogel, as well as the resulting rheological properties, largely affect its applicability in extrusion-based 3D printing. Here, we prepared a new poly(acrylic acid)-based self-healing hydrogel by controlling the hydrogel design factors based on a defined material design window in terms of rheological properties for application in extrusion-based 3D printing. The hydrogel is designed with a poly(acrylic acid) main chain with a 1.0 mol% covalent crosslinker and 2.0 mol% dynamic crosslinker, and is successfully prepared based on radical polymerization utilizing ammonium persulfate as a thermal initiator. With the prepared poly(acrylic acid)-based hydrogel, self-healing characteristics, rheological characteristics, and 3D printing applicability are deeply investigated. The hydrogel spontaneously heals mechanical damage within 30 min and exhibits appropriate rheological characteristics, including G 'similar to 1075 Pa and tan delta similar to 0.12, for extrusion-based 3D printing. Upon application in 3D printing, various 3D structures of hydrogel were successfully fabricated without showing structural deformation during the 3D printing process. Furthermore, the 3D-printed hydrogel structures exhibited excellent dimensional accuracy of the printed shape compared to the designed 3D structure.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Mechanical characterisation for numerical simulation of extrusion-based 3D concrete printing
    van den Heever, Marchant
    Bester, Frederick
    Kruger, Jacques
    van Zijl, Gideon
    JOURNAL OF BUILDING ENGINEERING, 2021, 44
  • [42] Extrusion-Based 3D Food Printing: Printability Assessment and Improvement Techniques
    Amaresh Kadival
    Manpreet Kour
    Deepoo Meena
    Jayeeta Mitra
    Food and Bioprocess Technology, 2023, 16 : 987 - 1008
  • [43] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    Davila, Jose Luis
    d'Avila, Marcos Akira
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (1-4): : 675 - 686
  • [44] Influence of gradation on extrusion-based 3D printing concrete with coarse aggregate
    Chen, Yidong
    Zhang, Yunsheng
    Zhang, Yu
    Pang, Bo
    Zhang, Wenhua
    Liu, Cheng
    Liu, Zhiyong
    Wang, Dafu
    Sun, Guowen
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 403
  • [45] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    José Luis Dávila
    Marcos Akira d’Ávila
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 675 - 686
  • [46] Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing
    Panda, Biranchi
    Unluer, Cise
    Tan, Ming Jen
    CEMENT & CONCRETE COMPOSITES, 2018, 94 : 307 - 314
  • [47] Extrusion-Based 3D Printing for Highly Porous Alginate Materials Production
    Menshutina, Natalia
    Abramov, Andrey
    Tsygankov, Pavel
    Lovskaya, Daria
    GELS, 2021, 7 (03)
  • [48] Extrusion-Based 3D Food Printing: Printability Assessment and Improvement Techniques
    Kadival, Amaresh
    Kour, Manpreet
    Meena, Deepoo
    Mitra, Jayeeta
    FOOD AND BIOPROCESS TECHNOLOGY, 2023, 16 (05) : 987 - 1008
  • [49] Extrusion-Based 3D Printing of Fibrin for Modular Bone Tissue Engineering
    Piard, C.
    Fisher, J. P.
    TISSUE ENGINEERING PART A, 2016, 22 : S118 - S118
  • [50] Utilisation of By-Product Phosphogypsum Through Extrusion-Based 3D Printing
    Sinka, Maris
    Vaiciukyniene, Danute
    Nizeviciene, Dalia
    Sapata, Alise
    Fornes, Ignacio Villalon
    Vaitkevicius, Vitoldas
    Serelis, Evaldas
    MATERIALS, 2024, 17 (22)