DNA-nanostructure-templated assembly of planar and curved lipid-bilayer membranes

被引:1
|
作者
Elbahnasawy, Mostafa A. [1 ]
Nasr, Mahmoud L. [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Bot & Microbiol Dept, Immunol Lab, Cairo, Egypt
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Renal Div & Engn Med Div, Boston, MA 02115 USA
来源
FRONTIERS IN CHEMISTRY | 2023年 / 10卷
基金
美国国家卫生研究院;
关键词
DNA nanostructures; liposomes; DNA-corralled nanodiscs; DNA origami; nanodiscs; membrane proteins; viral entry; RHODOBACTER-SPHAEROIDES; FOLDING DNA; ORIGAMI; PROTEIN; NANODISCS; LIPOSOMES; CHANNEL; RECONSTITUTION; POLIOVIRUS; RESOLUTION;
D O I
10.3389/fchem.2022.1047874
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid-bilayer nanodiscs and liposomes have been developed to stabilize membrane proteins in order to study their structures and functions. Nanodiscs are detergent-free, water-soluble, and size-controlled planar phospholipid-bilayer platforms. On the other hand, liposomes are curved phospholipid-bilayer spheres with an aqueous core used as drug delivery systems and model membrane platforms for studying cellular activities. A long-standing challenge is the generation of a homogenous and monodispersed lipid-bilayer system with a very wide range of dimensions and curvatures (elongation, bending, and twisting). A DNA-origami template provides a way to control the shapes, sizes, and arrangements of lipid bilayers via enforcing the assembly of lipid bilayers within the cavities created by DNA nanostructures. Here, we provide a concise overview and discuss how to design planar and curved lipid-bilayer membranes by using DNA-origami nanostructures as templates. Finally, we will discuss the potential applications of DNA-origami nanostructures in the structural and functional studies of large membrane proteins and their complexes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A QUARTZ CELL FOR STUDYING PLANAR LIPID BILAYER-MEMBRANES
    PROCOPIO, J
    VARANDA, WA
    FORNES, JA
    BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 688 (03) : 808 - 810
  • [32] FORMATION OF PLANAR BILAYER MEMBRANES FROM LIPID MONOLAYERS - CRITIQUE
    WHITE, SH
    PETERSEN, DC
    SIMON, S
    MASAOYAFUSO
    BIOPHYSICAL JOURNAL, 1976, 16 (05) : 481 - 489
  • [33] Movement of fatty acids across planar bilayer lipid membranes
    Pohl, EE
    Pohl, P
    BIOPHYSICAL JOURNAL, 1999, 76 (01) : A184 - A184
  • [34] FUSION OF SECRETORY GRANULES WITH PLANAR LIPID BILAYER-MEMBRANES
    CHANTURIYA, A
    WHITTAKER, M
    ZIMMERBERG, J
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A284 - A284
  • [35] Planar bilayer lipid membranes, binary phase diagrams, and their relationship
    Shchipunov, YA
    BIOLOGICHESKIE MEMBRANY, 1996, 13 (03): : 322 - 329
  • [36] THE STUDY OF ION CHANNELS IN PLANAR LIPID BILAYER-MEMBRANES
    ALVAREZ, O
    BENOS, D
    LATORRE, R
    JOURNAL OF ELECTROPHYSIOLOGICAL TECHNIQUES, 1985, 12 (03): : 159 - 177
  • [37] Fatty acid transport across lipid bilayer planar membranes
    Romano-Fontes, LG
    Curi, R
    Peres, CM
    Nishiyama-Naruke, A
    Brunaldi, K
    Abdulkader, F
    Procopio, J
    LIPIDS, 2000, 35 (01) : 31 - 34
  • [38] INFLUENCE OF OZONE ON THE PERMEABILITY OF PLANAR BILAYER LIPID-MEMBRANES
    SEMENKOVA, HN
    KEDITZ, H
    CHERENKEVICH, SN
    KHMELNITSKY, AI
    BIOFIZIKA, 1984, 29 (02): : 323 - 325
  • [39] Polysaccharide-supported planar bilayer lipid model membranes
    Baumgart, T
    Offenhäusser, A
    LANGMUIR, 2003, 19 (05) : 1730 - 1737
  • [40] Can macular xanthophylls replace cholesterol in formation of the liquid-ordered phase in lipid-bilayer membranes?
    Subczynski, Witold K.
    Wisniewska-Becker, Anna
    Widomska, Justyna
    ACTA BIOCHIMICA POLONICA, 2012, 59 (01) : 109 - 114