Simulation of positive operator-valued measures and quantum instruments via quantum state-preparation algorithms

被引:6
|
作者
Pinto, Douglas F. [1 ]
Zanetti, Marcelo S. [2 ]
Basso, Marcos L. W. [3 ]
Maziero, Jonas [1 ]
机构
[1] Univ Fed Santa Maria, Ctr Nat & Exact Sci, Phys Dept, Roraima Ave 1000, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Fed Santa Maria, Technol Ctr, Dept Elect & Comp, Roraima Ave 1000, BR-97105900 Santa Maria, RS, Brazil
[3] Fed Univ ABC, Ctr Nat & Human Sci, States Ave 5001, BR-09210580 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1103/PhysRevA.107.022411
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In Phys. Rev. A 100, 062317 (2019), the authors reported an algorithm to implement, in a circuit-based quantum computer, a general quantum measurement (GQM) of a two-level quantum system, a qubit. Even though their algorithm seems right, its application involves the solution of an intricate nonlinear system of equations to obtain the angles determining the quantum circuit to be implemented for the simulation. In this article, we identify and discuss a simple way to circumvent this issue and implement GQMs on any d-level quantum system through quantum state preparation algorithms. Using some examples for one qubit, one qutrit, and two qubits, we illustrate the easy of application of our protocol. In addition, we show how one can utilize our protocol for simulating quantum instruments, for which we also give an example. All our examples are demonstrated using IBM's quantum processors.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Symmetric Remote Single-Qubit State Preparation via Positive Operator-Valued Measurement
    Wang, Zhang-Yin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (06) : 1357 - 1369
  • [32] Symmetric Remote Single-Qubit State Preparation via Positive Operator-Valued Measurement
    Zhang-Yin Wang
    International Journal of Theoretical Physics, 2010, 49 : 1357 - 1369
  • [33] Operator-valued Schatten spaces and quantum entropies
    Beigi, Salman
    Goodarzi, Milad M.
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (05)
  • [34] OPERATOR-VALUED ENTROPY OF A QUANTUM MECHANICAL MEASUREMENT
    DAVIS, C
    PROCEEDINGS OF THE JAPAN ACADEMY, 1961, 37 (09): : 533 - &
  • [35] COMPATIBILITY OF OBSERVABLES REPRESENTED BY POSITIVE OPERATOR-VALUED MEASURES
    KRUSZYNSKI, P
    DEMUYNCK, WM
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (08) : 1761 - 1763
  • [36] Conditional expectations and dilations of positive operator-valued measures
    Hensz-Cha̧dzyńska E.
    Jajte R.
    Paszkiewicz A.
    Journal of Mathematical Sciences, 1998, 92 (3) : 3896 - 3899
  • [37] Extremal covariant quantum operations and positive operator valued measures
    D'Ariano, GM
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (09) : 3620 - 3635
  • [38] Positive operator valued measures and the quantum Monty Hall problem
    Zander, Claudia
    Casas, Montserrat
    Plastino, Angel
    Plastino, Angel R.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2006, 78 (03): : 417 - 422
  • [39] Quantum tomography using state-preparation unitaries
    van Apeldoorn, Joran
    Cornelissen, Arjan
    Gilyen, Andras
    Nannicini, Giacomo
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 1265 - 1318
  • [40] FIELDS AS OPERATOR-VALUED DISTRIBUTIONS IN RELATIVISTIC QUANTUM THEORY
    WIGHTMAN, AS
    GARDING, L
    ARKIV FOR FYSIK, 1965, 28 (02): : 129 - &