Orbital stability of the trains of peaked solitary waves for the modified Camassa-Holm-Novikov equation

被引:0
|
作者
Luo, Ting [1 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
orbital stability; modified Camassa-Holm-Novikov equation; shallow water equation; multi-peakons; CAUCHY-PROBLEM; PEAKONS;
D O I
10.1515/anona-2023-0124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consideration herein is the stability issue of peaked solitary wave solution for the modified Camassa-Holm-Novikov equation, which is derived from the shallow water theory. This wave configuration accommodates the ordered trains of the modified Camassa-Holm-Novikov-peaked solitary solution. With the application of conservation laws and the monotonicity property of the localized energy functionals, we prove the orbital stability of this wave profile in the H-1(R) energy space according to the modulation argument.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Orbital stability of smooth solitary waves for the b-family of Camassa-Holm equations
    Long, Teng
    Liu, Changjian
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 446
  • [32] The stability of exact solitary wave solutions for simplified modified Camassa-Holm equation
    Liu, XiaoHua
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 108
  • [33] Orbital stability of the sum of N peakons for the generalized modified Camassa-Holm equation
    Tongjie Deng
    Aiyong Chen
    Monatshefte für Mathematik, 2023, 202 : 229 - 262
  • [34] Orbital stability of the sum of N peakons for the generalized modified Camassa-Holm equation
    Deng, Tongjie
    Chen, Aiyong
    MONATSHEFTE FUR MATHEMATIK, 2023, 202 (02): : 229 - 262
  • [35] Orbital Stability of Periodic Peakons to a Generalized μ-Camassa–Holm Equation
    Changzheng Qu
    Ying Zhang
    Xiaochuan Liu
    Yue Liu
    Archive for Rational Mechanics and Analysis, 2014, 211 : 593 - 617
  • [36] On the transverse stability of smooth solitary waves in a two-dimensional Camassa-Holm equation
    Geyer, Anna
    Liu, Yue
    Pelinovsky, Dmitry E.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 188 : 1 - 25
  • [37] SOLITARY WAVES OF THE CAMASSA-HOLM DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Guo, L. J.
    Ward, C. B.
    Mylonas, I. K.
    Kevrekidis, P. G.
    ROMANIAN REPORTS IN PHYSICS, 2020, 72 (02)
  • [38] On peaked and smooth solitons for the Camassa-Holm equation
    Qiao, ZJ
    Zhang, GP
    EUROPHYSICS LETTERS, 2006, 73 (05): : 657 - 663
  • [39] Orbital stability of periodic peakons for the higher-order modified Camassa-Holm equation
    Chong, Gezi
    Fu, Ying
    Wang, Hao
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 707 - 743
  • [40] Existence of the Periodic Peaked Solitary-Wave Solutions to the Camassa–Holm–Kadomtsev–Petviashvili Equation
    Byungsoo Moon
    Journal of Nonlinear Mathematical Physics, 2022, 29 : 905 - 918