Hybrid Triboelectric-Electromagnetic-Piezoelectric Wind Energy Harvester toward Wide-Scale IoT Self-Powered Sensing

被引:5
|
作者
Tian, Shuo [1 ]
Lai, Lixiang [1 ]
Xin, Jianpeng [1 ]
Qu, Zongtao [1 ]
Li, Bin [1 ]
Dai, Yejing [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen Campus, Shenzhen 518107, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
hybrid energy harvester; self-powered IoT sensing; wind energy harvesting; NANOGENERATOR; EFFICIENT;
D O I
10.1002/smll.202307282
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wind energy is the most promising alternative to fossil fuels as a clean, nonpolluting, and renewable source of energy. However, how to achieve stable and efficient harvesting of wind energy has been a major challenge. Here, a triboelectric-electromagnetic-piezoelectric hybrid wind energy harvester (TEP-WEH) based on the cantilever is proposed. The TEP-WEH achieves a power density of 62.79 mW (m3 rpm)-1 at a 3 m s-1 wind speed, attributable to a rational and optimized structural design. In addition, owing to the soft contact strategy of the TENG module, the TEP-WEH provides excellent durability and drivability. The harvester is demonstrated to successfully and continuously light a commercial lighting bulb rated at 5 W and provide an energy supply for self-powered sensing. This work provides an efficient solution for wind energy harvesting and wide-scale self-powered IoT sensing. A hybrid triboelectric-electromagnetic-piezoelectric wind energy harvester (TEP-WEH) is presented through the introduction of a cantilever, which achieves a power density of 62.79 mW (m3 rpm)-1 at a wind speed of 3 m s-1. This strategy provides a constructive suggestion for the efficient harvesting of wind energy and underpinning the future Internet of Things (IoT) infrastructure.image
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Modeling of the Hybrid Vibration-based Energy Harvester for Self-Powered IoT Sensor
    Ahmad, M. R.
    Cader, M. S. Muhamed Ali
    Khairuddin, Z. A. Mohammad
    2020 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), 2021,
  • [22] A Triboelectric-Electromagnetic Hybrid Nanogenerator with Broadband Working Range for Wind Energy Harvesting and a Self-Powered Wind Speed Sensor
    Ye, Cuiying
    Dong, Kai
    An, Jie
    Yi, Jia
    Peng, Xiao
    Ning, Chuan
    Wang, Zhong Lin
    ACS ENERGY LETTERS, 2021, 6 (04) : 1443 - 1452
  • [23] Self-powered smart agriculture real-time sensing device based on hybrid wind energy harvesting triboelectric-electromagnetic nanogenerator
    Gui, Yingang
    Wang, Yunfeng
    He, Shasha
    Yang, Jiacheng
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [24] Self-powered cardiac pacemaker: the viability of a piezoelectric energy harvester
    Gururaj, Sanjana
    Applequist, Alexis
    Bhattarai, Sujata
    Appaji, Abhishek M.
    Kadambi, Pooja
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [25] Omnidirectional wind energy harvester for self-powered agro-environmental information sensing
    Dai, Shufen
    Li, Xunjia
    Jiang, Chengmei
    Zhang, Qi
    Peng, Bo
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2022, 91
  • [26] Dual-Polarized Wide-Angle Energy Harvester for Self-Powered IoT Devices
    Dinh, Minh
    Ha-Van, Nam
    Tung, Nguyen Thanh
    Thuy Le, Minh
    IEEE ACCESS, 2021, 9 : 103376 - 103384
  • [27] Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting
    Ren, Xiaohu
    Fan, Huiqing
    Wang, Chao
    Ma, Jiangwei
    Li, Hua
    Zhang, Mingchang
    Lei, Shenhui
    Wang, Weijia
    NANO ENERGY, 2018, 50 : 562 - 570
  • [28] Hybrid acoustic, vibration, and wind energy harvester using piezoelectric transduction for self-powered wireless sensor node applications
    Izhar
    Iqbal, Muhammad
    Khan, Farid
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [29] Triboelectric-Pyroelectric-Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing
    Zi, Yunlong
    Lin, Long
    Wang, Jie
    Wang, Sihong
    Chen, Jun
    Fan, Xing
    Yang, Po-Kang
    Yi, Fang
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2015, 27 (14) : 2340 - 2347
  • [30] The nexus of sustainable fisheries: A hybrid self-powered and self-sensing wave energy harvester
    Liu, Weizhen
    Li, Yingjie
    Tang, Hongjie
    Zhang, Zutao
    Wu, Xiaoping
    Zhao, Jie
    Zeng, Lei
    Tang, Minfeng
    Hao, Daning
    OCEAN ENGINEERING, 2024, 295