Randomized Milstein algorithm for approximation of solutions of jump-diffusion SDEs

被引:2
|
作者
Przybylowicz, Pawel [1 ]
Schwarz, Verena [2 ]
Szoelgyenyi, Michaela [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[2] Univ Klagenfurt, Dept Stat, Univ Str 65-67, A-9020 Klagenfurt, Austria
基金
奥地利科学基金会;
关键词
Jump-diffusion SDEs; Randomized Milstein algorithm; Levy's area; n th minimal error; Optimality of algorithms; Information-based complexity; TIME-IRREGULAR COEFFICIENTS; INTEGRATION;
D O I
10.1016/j.cam.2023.115631
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the error of the randomized Milstein algorithm for solving scalar jump- diffusion stochastic differential equations. We provide a complete error analysis under substantially weaker assumptions than those known in the literature. In case the jump-commutativity condition is satisfied, we prove optimality of the randomized Milstein algorithm by establishing matching lower bounds. Moreover, we give some insight into the multidimensional case by investigating the optimal convergence rate for the approximation of jump-diffusion type Levys' areas. Finally, we report numerical experiments that support our theoretical findings. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Hybrid master equation for jump-diffusion approximation of biomolecular reaction networks
    Altintan, Derya
    Koeppl, Heinz
    BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 261 - 294
  • [22] Numerical approximation for options pricing of a stochastic volatility jump-diffusion model
    Aboulaich, R.
    Baghery, F.
    Jraifi, A.
    1600, Centre for Environment Social and Economic Research, Post Box No. 113, Roorkee, 247667, India (50): : 69 - 82
  • [23] EXISTENCE AND APPROXIMATION OF STRONG SOLUTIONS OF SDES WITH FRACTIONAL DIFFUSION COEFFICIENTS
    Yang, Hao
    Wu, Fuke
    Kloeden, Peter E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (10): : 5553 - 5567
  • [24] JUMP-DIFFUSION RISK-SENSITIVE ASSET MANAGEMENT II: JUMP-DIFFUSION FACTOR MODEL
    Davis, Mark
    Lleo, Sebastien
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 1441 - 1480
  • [25] A Continuous-Time Ehrenfest Model with Catastrophes and Its Jump-Diffusion Approximation
    Dharmaraja, Selvamuthu
    Di Crescenzo, Antonio
    Giorno, Virginia
    Nobile, Amelia G.
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (02) : 326 - 345
  • [26] ON THE JUMP-DIFFUSION APPROXIMATION OF STOCHASTIC DIFFERENCE-EQUATIONS DRIVEN BY A MIXING SEQUENCE
    FUJIWARA, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1990, 42 (03) : 353 - 376
  • [27] A Continuous-Time Ehrenfest Model with Catastrophes and Its Jump-Diffusion Approximation
    Selvamuthu Dharmaraja
    Antonio Di Crescenzo
    Virginia Giorno
    Amelia G. Nobile
    Journal of Statistical Physics, 2015, 161 : 326 - 345
  • [28] Exact solutions and doubly efficient approximations of jump-diffusion Ito equations
    Maghsoodi, Y
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (06) : 1049 - 1072
  • [29] An Approach to Estimating Building Layouts Using Radar and Jump-Diffusion Algorithm
    Nikolic, Marija M.
    Ortner, Mathias
    Nehorai, Arye
    Djordjevic, Antonije R.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (03) : 768 - 776
  • [30] Compensated split-step balanced methods for nonlinear stiff SDEs with jump-diffusion and piecewise continuous arguments
    Ying Xie
    Chengjian Zhang
    Science China Mathematics, 2020, 63 : 2573 - 2594