In situ recycling of Al foil and cathode materials from spent lithium-ion batteries through exogenous advanced oxidation

被引:4
|
作者
Yan, Shuxuan [1 ]
Ou, Yudie [1 ]
Li, Xueping [2 ]
Yuan, Lu [3 ,4 ]
Chen, Xiangping [3 ,4 ]
Zhou, Tao [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Peoples R China
[2] Guangxi Minzu Univ, Coll Chem & Chem Engn, Key Lab Chem & Engn Forest Prod, State Ethn Affairs Commiss, Nanning 530006, Peoples R China
[3] Hunan Normal Univ, Coll Chem & Chem Engn, Changsha 410081, Peoples R China
[4] Hunan Normal Univ, Natl & Local Joint Engn Lab New Petro Chem Mat & F, Changsha 410081, Peoples R China
关键词
Spent lithium-ion batteries; PVDF degradation; Exfoliation mechanism; In-situ recycling; Exogenous advanced oxidation process; DEGRADATION; FACILE; METALS; SYSTEM; WASTE;
D O I
10.1016/j.seppur.2023.124788
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The efficient and sustainable recycling of spent lithium-ion batteries (LIBs), especially valuable metal enriched cathodes, is critical to achieve the goals of carbon peaking and carbon neutrality of new energy industry. However, current energy-intensive separation technologies to liberate cathode materials from current collector can hardly balance urgent requirements to sustainability and efficiency. Herein, an improved advanced oxidation technology based on ultrasonic assisted S2O82--Fe2+-H+ system (USFH) was innovatively proposed to exfoliate the cathode materials from Al foil through the selective degradation of polyvinylidene difluoride binders (PVDF), with the emphasis on degradation mechanism. Experimental results illustrate that nearly all of coating materials were effectively separated from Al foil under the optimized conditions. Then, the density function theory (DFT) calculations and possible chemical reactions were conducted to reveal the detailed degradation mechanism for PVDF. It can be discovered that the functional groups in PVDF will be attacked by free radicals generated in USFH, leading to defluoridation with the formation of oxyorganics containing oxygen groups (e.g. C=O, O-H) and fracture of C-C skeleton to olefins, carboxylic acids, ketones and alkanes with shorter carbon chains, along with exfoliation of organic intermediates into solution. It may promise a green and efficient alternative by novel improved advanced oxidation technology with sound fundamental theory for in-situ recycling of spent LIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Review on selective recovery of lithium from cathode materials in spent lithium-ion batteries
    Wang Y.
    Zheng X.
    Tao T.
    Liu X.
    Li L.
    Sun Z.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (08): : 4530 - 4543
  • [32] Graphite Recycling from Spent Lithium-Ion Batteries
    Rothermel, Sergej
    Evertz, Marco
    Kasnatscheew, Johannes
    Qi, Xin
    Gruetzke, Martin
    Winter, Martin
    Nowak, Sascha
    CHEMSUSCHEM, 2016, 9 (24) : 3473 - 3484
  • [33] Scalable Direct Recycling of Cathode Black Mass from Spent Lithium-Ion Batteries
    Gupta, Varun
    Yu, Xiaolu
    Gao, Hongpeng
    Brooks, Christopher
    Li, Weikang
    Chen, Zheng
    ADVANCED ENERGY MATERIALS, 2023, 13 (06)
  • [34] Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives
    Raj, Tirath
    Chandrasekhar, Kuppam
    Kumar, Amradi Naresh
    Sharma, Pooja
    Pandey, Ashok
    Jang, Min
    Jeon, Byong-Hun
    Varjani, Sunita
    Kim, Sang-Hyoun
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 429
  • [35] Progress of Recycling and Seperation of the Electrode Materials from Spent Lithium-ion Batteries
    Wen, Rui-ming
    Qi, Feng-pei
    Hu, Yong-jun
    Liu, Chang-hui
    You, Pei-qing
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 2319 - 2324
  • [36] Recycling of Cathode active materials from Spent Lithium-ion Batteries (LIBs): Effective Methodology for Environmental Remediation
    Jena, Kishore K.
    Choi, Daniel S.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 311
  • [37] Recycle cathode materials from spent lithium-ion batteries by an innovative method
    Lou, Ping
    Guan, Minyuan
    Wu, Guoqiang
    Wu, Jian
    Yu, Haisheng
    Zhang, Weixin
    Cheng, Qi
    IONICS, 2022, 28 (05) : 2135 - 2141
  • [38] Recycle cathode materials from spent lithium-ion batteries by an innovative method
    Ping Lou
    Minyuan Guan
    Guoqiang Wu
    Jian Wu
    Haisheng Yu
    Weixin Zhang
    Qi Cheng
    Ionics, 2022, 28 : 2135 - 2141
  • [39] Recycling of LiCoO2 cathode materials from spent lithium ion batteries
    Tong, Dongge
    Lai, Qiongyu
    Ji, Xiaoyang
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2005, 56 (10): : 1967 - 1970
  • [40] Experimental Study on Recycling of Spent Lithium-Ion Battery Cathode Materials
    Jung, Joey Chung-Yen
    Chow, Norman
    Warkentin, Douglas Dale
    Chen, Ke
    Melashvili, Mariam
    Meseldzija, Zarko
    Sui, Pang-Chieh
    Zhang, Jiujun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (16)