Data-Driven Discovery of Governing Equations for Coarse-Grained Heterogeneous Network Dynamics

被引:0
|
作者
Owens, Katherine [1 ]
Kutz, J. Nathan [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
来源
基金
美国国家科学基金会;
关键词
data-driven; model discovery; networked dynamical systems; relaxation oscillations; limit cycle; coarse-grained dynamics; MODEL-REDUCTION; DIFFUSION MAPS; FRAMEWORK; SYSTEMS;
D O I
10.1137/22M1497882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We leverage data-driven model discovery methods to determine governing equations for the emergent behavior of heterogeneous networked dynamical systems. Specifically, we consider networks of coupled nonlinear oscillators whose collective behavior approaches a limit cycle. Stable limit cycles are of interest in many biological applications, as they model self-sustained oscillations (e.g. heartbeats, chemical oscillations, neurons firing, circadian rhythm). For systems that display relaxation oscillations, our method automatically detects boundary (time) layer structures in the dynamics, fitting inner and outer solutions and matching them in a data-driven manner. We demonstrate the method on well-studied systems: the Rayleigh oscillator and the van der Pol oscillator. We then apply the mathematical framework to networks of semisynchronized Kuramoto, Rayleigh, Rossler, and FitzHugh-Nagumo oscillators, as well as heterogeneous combinations thereof, showing that the discovery of coarse-grained variables and dynamics can be accomplished with the proposed architecture.
引用
收藏
页码:2601 / 2623
页数:23
相关论文
共 50 条
  • [21] Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
    Gao, L. Mars
    Kutz, J. Nathan
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2286):
  • [22] Consequences of coarse-grained Vlasov equations
    Morawetz, K
    Walke, R
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 330 (3-4) : 469 - 495
  • [23] Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization
    Fernando Lejarza
    Michael Baldea
    [J]. Scientific Reports, 12
  • [24] Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization
    Lejarza, Fernando
    Baldea, Michael
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [25] MODELING CROWD DYNAMICS THROUGH COARSE-GRAINED DATA ANALYSIS
    Motsch, Sebastien
    Moussaid, Mehdi
    Guillot, Elsa G.
    Moreau, Mathieu
    Pettre, Julien
    Theraulaz, Guy
    Appert-Rolland, Cecile
    Degond, Pierre
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2018, 15 (06) : 1271 - 1290
  • [26] Data-driven discovery of quasiperiodically driven dynamics
    Das, Suddhasattwa
    Mustavee, Shakib
    Agarwal, Shaurya
    [J]. NONLINEAR DYNAMICS, 2024,
  • [27] Entropy production for coarse-grained dynamics
    Busiello, D. M.
    Hidalgo, J.
    Maritan, A.
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (07):
  • [28] Coarse-grained dynamics for generalized recombination
    Stephens, Christopher R.
    Poli, Riccardo
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (04) : 541 - 557
  • [29] Multiconfigurational Coarse-Grained Molecular Dynamics
    Sharp, Morris E.
    Vazquez, Francisco X.
    Wagner, Jacob W.
    Dannenhoffer-Lafage, Thomas
    Voth, Gregory A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (05) : 3306 - 3315
  • [30] Reactive Coarse-Grained Molecular Dynamics
    Dannenhoffer-Lafage, Thomas
    Voth, Gregory A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) : 2541 - 2549