An Anchor-Free Pipeline MFL Image Detection Method

被引:0
|
作者
Han, Fucheng [1 ]
Lang, Xianming [1 ]
Liu, Mingyang [2 ]
机构
[1] Liaoning Petrochem Univ, Sch Informat & Control Engn, Fushun 113001, Peoples R China
[2] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Anchor free; CenterNet; lightweight network; magnetic flux leakage (MFL); object detection; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION; SIGNALS;
D O I
10.1109/TIM.2023.3304688
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To apply deep learning algorithms to magnetic flux leakage (MFL) detection, we propose an anchor-free pipeline MFL image detection method (AFMFLDM) that can simultaneously combine low latency and high accuracy. The algorithm is modified based on CenterNet. The anchor-free target detection algorithm does not need to design the anchor box size compared with the one-stage and two-stage target detection algorithms, and there is no nonmaximum suppression (NMS) process, which reduces the computational effort. Then, the backbone of this algorithm is selected as a modified PP-LCNet, which replaces the normal convolution with a depthwise separable convolution. It is supplemented with a technique of adjusting parameters to form a network similar to MobileNetV1, which ensures low computational effort and high accuracy compared with the popular feature extraction networks. Finally, a feature fusion module based on receptive field convolution (FFRF) is introduced to improve the detection accuracy. The experimental results show that the accuracy of the algorithm is 95.6% when the intersection over union (IOU) is greater than 0.5, and the inference time is 8.7 ms, which can meet the actual demand of pipeline MFL detection.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Multiscale Anchor-Free Region Proposal Network for Pedestrian Detection
    Cao, Zhiwei
    Yang, Huihua
    Xu, Weijin
    Zhao, Juan
    Li, Lingqiao
    Pan, Xipeng
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [42] Ship Grid: A Novel Anchor-Free Ship Detection Algorithm
    Chen, Yantong
    Zhang, Yanyan
    Wang, Jialiang
    Liu, Yang
    IEEE INTELLIGENT SYSTEMS, 2024, 39 (05) : 47 - 56
  • [43] GEOSPATIAL OBJECT DETECTION WITH SINGLE SHOT ANCHOR-FREE NETWORK
    Guo, Yiyou
    Ji, Jinsheng
    Lu, Xiankai
    Xie, Huan
    Tong, Xiaohua
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 280 - 283
  • [44] Coordinate-based anchor-free module for object detection
    Zhiyong Tang
    Jianbing Yang
    Zhongcai Pei
    Xiao Song
    Applied Intelligence, 2021, 51 : 9066 - 9080
  • [45] ObjectBox: From Centers to Boxes for Anchor-Free Object Detection
    Zand, Mohsen
    Etemad, Ali
    Greenspan, Michael
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 390 - 406
  • [46] HDNet: A lightweight anchor-free pedestrian head detection algorithm
    Lin W.
    Shao J.
    Zhang N.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2022, 52 (06): : 1152 - 1160
  • [47] Coordinate-based anchor-free module for object detection
    Tang, Zhiyong
    Yang, Jianbing
    Pei, Zhongcai
    Song, Xiao
    APPLIED INTELLIGENCE, 2021, 51 (12) : 9066 - 9080
  • [48] Domain Adaptation of Anchor-Free object detection for urban traffic
    Yu, Xiaoyong
    Lu, Xiaoqiang
    NEUROCOMPUTING, 2024, 582
  • [49] Anchor-free Proposal Generation Network for Efficient Object Detection
    Nguyen, Hoanh
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 327 - 335
  • [50] Anchor-free YOLOv3 for mass detection in mammogram
    Zhang, Linlin
    Li, Yanfeng
    Chen, Houjin
    Wu, Wen
    Chen, Kuan
    Wang, Shaokang
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191