Inner Cascaded U2-Net: An Improvement to Plain Cascaded U-Net

被引:4
|
作者
Wu, Wenbin [1 ]
Liu, Guanjun [1 ]
Liang, Kaiyi [2 ]
Zhou, Hui [2 ]
机构
[1] Tongji Univ, Shanghai 201804, Peoples R China
[2] Shanghai Univ Med & Hlth Sci, Jiading Dist Cent Hosp, Shanghai 201800, Peoples R China
来源
关键词
Deep neural networks; medical image segmentation; U-Net; cascaded; convolution block; SEGMENTATION;
D O I
10.32604/cmes.2022.020428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction. U-Net has been the baseline model since the very beginning due to a symmetrical U-structure for better feature extraction and fusing and suitable for small datasets. To enhance the segmentation performance of U-Net, cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine. However, the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one. In this article, we devise novel Inner Cascaded U-Net and Inner Cascaded U2-Net as improvements to plain cascaded U-Net for medical image segmentation. The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information. To further boost segmentation performance, we propose Inner Cascaded U2-Net, which applies residual U-block to capture more global contextual information from different scales. The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge (BraTS) 2013 and ISBI Liver Tumor Segmentation Challenge (LiTS) dataset in comparison to related U-Net, cascaded U-Net, U-Net++, U2-Net and state-of-the-art methods. Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U2-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.
引用
收藏
页码:1323 / 1335
页数:13
相关论文
共 50 条
  • [31] Multiresolution cascaded attention U-Net for localization and segmentation of optic disc and fovea in fundus images
    R. Shalini
    Varun P. Gopi
    Scientific Reports, 14 (1)
  • [32] 3D U2-Net: A 3D Universal U-Net for Multi-domain Medical Image Segmentation
    Huang, Chao
    Han, Hu
    Yao, Qingsong
    Zhu, Shankuan
    Zhou, S. Kevin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 291 - 299
  • [33] U-Net vs Transformer: Is U-Net Outdated in Medical Image Registration?
    Jia, Xi
    Bartlett, Joseph
    Zhang, Tianyang
    Lu, Wenqi
    Qiu, Zhaowen
    Duan, Jinming
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 : 151 - 160
  • [34] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [35] Auto-Segmentation On Liver With U-Net And Pixel Deconvolutional U-Net
    Yao, H.
    Chang, J.
    MEDICAL PHYSICS, 2020, 47 (06) : E584 - E584
  • [36] Wavelet U-Net: Incorporating Wavelet Transform Into U-Net for Liver Segmentation
    Chang, J.
    Chang, C.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [37] Breast tumor segmentation in ultrasound images: comparing U-net and U-net + +
    de Oliveira, Carlos Eduardo Gonçalves
    Vieira, Sílvio Leão
    Paranaiba, Caio Felipe Brito
    Itikawa, Emerson Nobuyuki
    Research on Biomedical Engineering, 2025, 41 (01)
  • [38] Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation
    Alfonso Francia, Gendry
    Pedraza, Carlos
    Aceves, Marco
    Tovar-Arriaga, Saul
    IEEE ACCESS, 2020, 8 : 38493 - 38500
  • [39] Performance of a U2-net model for phase unwrapping
    Liao, Liangzhe
    Lei, Zhenkun
    Tang, Chen
    Bai, Ruixiang
    Wang, Xiaohong
    APPLIED OPTICS, 2023, 62 (34) : 9108 - 9118
  • [40] Multimodal attention-gated cascaded U-Net model for automatic brain tumor detection and segmentation
    Chinnam, Siva Koteswara Rao
    Sistla, Venkatramaphanikumar
    Kolli, Venkata Krishna Kishore
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78