Isothermal Microcalorimetry Analysis of Li/β-MnO2 Discharge

被引:1
|
作者
Arnot, David J. [1 ,2 ]
Vila, Mallory N. [1 ,3 ]
Takeuchi, Esther S. [1 ,2 ,3 ,4 ]
Marschilok, Amy C. [1 ,2 ,3 ,4 ]
Takeuchi, Kenneth J. [1 ,2 ,3 ,4 ]
机构
[1] SUNY Stony Brook, Inst Energy Sustainabil Environm & Equity, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Interdisciplinary Sci Dept, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
battery; batteries; -; lithium; manganese oxide; isothermal microcalorimetry; ELECTROLYTIC MANGANESE-DIOXIDE; PARASITIC REACTIONS; OXIDE NANOWIRES; ION BATTERIES; CATHODE; CELLS; MNO2; DECOMPOSITION; MECHANISM; BETA-MNO2;
D O I
10.1149/1945-7111/ad1ec5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Despite widespread use over several decades, the lithium/manganese dioxide (Li/MnO2) discharge mechanism is not completely understood owing to the structural complexity of the material. However, an improved understanding could lead to broader adoption as a primary and even secondary cathode material. Here, we examine the discharge of single-phase beta-MnO2 using isothermal microcalorimetry for the first time. Equilibrium voltage and entropy changes are characterized over the entire discharge range and used to rationalize the results. These measurements are supplemented by electrochemical impedance and X-ray diffraction data that give the clearest picture of the beta-MnO2 lithiation process to date. We find that the first half of discharge is dominated by a two-phase reaction to form Li0.5MnO2 followed by single-phase insertion to a composition of Li1.0MnO2, which confirms prior first-principles calculations. The tetragonal beta-MnO2 lattice undergoes asymmetric expansion from Jahn-Teller distorted Mn3+ to form an orthorhombic LiMnO2 phase which retains the 1 <bold>x</bold> 1 tunnel structure. Microcalorimetry results suggest the presence of parasitic reactions occurring during the second half of discharge, which could arise from decomposition of electrolyte or release and reaction of residual water retained in the structure.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] SOLID-STATE LI/MNO2 CELLS
    KANDA, M
    YAMADA, S
    SHIROGAMI, T
    SATO, Y
    TAKAMURA, T
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1982, 12 (05) : 599 - 606
  • [22] Processing of the spent Li/MnO2 battery.
    Frontino Paulino, Jessica
    Giovanini Busnardo, Natalia
    Carlos Afonso, Julio
    QUIMICA NOVA, 2007, 30 (03): : 718 - 722
  • [23] 固态Li/MnO2电池附视频
    M. KANDA
    赖兴华
    电池, 1984, (04) : 23 - 27
  • [24] THE STRUCTURE OF LITHIOPHORITE, (AL,LI)MNO2(OH)2
    WADSLEY, AD
    ACTA CRYSTALLOGRAPHICA, 1952, 5 (05): : 676 - 680
  • [25] RECENT ADVANCES IN LI MNO2 BATTERY TECHNOLOGY
    GILMOUR, A
    CHEMISTRY & INDUSTRY, 1988, (03) : 69 - 71
  • [26] Characteristics of a Li/MnO2 battery using a lithium powder anode at high-rate discharge
    Park, MS
    Yoon, WY
    JOURNAL OF POWER SOURCES, 2003, 114 (02) : 237 - 243
  • [27] STUDIES ON POTENTIAL IN DISCHARGE OF ALPHA MNO2 ELECTRODES
    UHLIG, HW
    BECKER, E
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1972, 251 (5-6): : 321 - 328
  • [28] Charge-discharge process of MnO2 supercapacitor
    Liu Kai-yu
    Ying, Zhang
    Wei, Zhang
    He, Zheng
    Geng, Su
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2007, 17 (03) : 649 - 653
  • [29] Charge-discharge process of MnO2 supercapacitor
    刘开宇
    张莹
    张伟
    郑禾
    苏耿
    TransactionsofNonferrousMetalsSocietyofChina, 2007, (03) : 649 - 653
  • [30] Safety characterization of Li/MnO2 cells -: Li/MnO2 cells are designed to avoid cell venting providing an advantage over Li/SO2 cells
    Naukam, AJ
    Wright, RC
    Matthews, ME
    SEVENTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, PROCEEDINGS, 2002, : 215 - 218