Transcriptional suppression of sphingolipid catabolism controls pathogen resistance in C. elegans

被引:3
|
作者
Nasrallah, Mohamad A. [1 ]
Peterson, Nicholas D. [1 ]
Szumel, Elizabeth S. [1 ]
Liu, Pengpeng [2 ]
Page, Amanda L. [1 ]
Tse, Samantha Y. [1 ]
Wani, Khursheed A. [1 ]
Tocheny, Claire E. [1 ]
Pukkila-Worley, Read [1 ]
机构
[1] Univ Massachusetts, Chan Med Sch, Dept Med, Program Innate Immun,Div Infect Dis & Immunol, Worcester, MA 01605 USA
[2] Univ Massachusetts, Chan Med Sch, Dept Mol Cell & Canc Biol, Worcester, MA USA
关键词
CAENORHABDITIS-ELEGANS; NUCLEAR RECEPTORS; IMMUNE-RESPONSE; NEMATODE; METABOLISM; CERAMIDE; ROLES; SPHINGOSINE-1-PHOSPHATE; SPHINGOSINE; CONTRIBUTES;
D O I
10.1371/journal.ppat.1011730
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Sphingolipids are required for diverse biological functions and are degraded by specific catabolic enzymes. However, the mechanisms that regulate sphingolipid catabolism are not known. Here we characterize a transcriptional axis that regulates sphingolipid breakdown to control resistance against bacterial infection. From an RNAi screen for transcriptional regulators of pathogen resistance in the nematode C. elegans, we identified the nuclear hormone receptor nhr-66, a ligand-gated transcription factor homologous to human hepatocyte nuclear factor 4. Tandem chromatin immunoprecipitation-sequencing and RNA sequencing experiments revealed that NHR-66 is a transcriptional repressor, which directly targets sphingolipid catabolism genes. Transcriptional de-repression of two sphingolipid catabolic enzymes in nhr-66 loss-of-function mutants drives the breakdown of sphingolipids, which enhances host susceptibility to infection with the bacterial pathogen Pseudomonas aeruginosa. These data define transcriptional control of sphingolipid catabolism in the regulation of cellular sphingolipids, a process that is necessary for pathogen resistance.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] The effect of Orsay virus protein expression on C. elegans Intracellular pathogen response
    Martinez, N.
    Chen, B.
    Cooper, E.
    Sowa, J. N.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 399 - 399
  • [42] A C. elegans orphan nuclear receptor contributes to xenobiotic resistance
    Lindblom, TH
    Pierce, GJ
    Sluder, AE
    CURRENT BIOLOGY, 2001, 11 (11) : 864 - 868
  • [43] Plant adaptogens increase lifespan and stress resistance in C. elegans
    F. A. C. Wiegant
    S. Surinova
    E. Ytsma
    M. Langelaar-Makkinje
    G. Wikman
    J. A. Post
    Biogerontology, 2009, 10 : 27 - 42
  • [44] Rapid selection of transgenic C. elegans using antibiotic resistance
    Jennifer I Semple
    Rosa Garcia-Verdugo
    Ben Lehner
    Nature Methods, 2010, 7 : 725 - 727
  • [45] Rapid selection of transgenic C. elegans using antibiotic resistance
    Semple, Jennifer I.
    Garcia-Verdugo, Rosa
    Lehner, Ben
    NATURE METHODS, 2010, 7 (09) : 725 - U82
  • [46] The C. elegans healthspan and stress-resistance assay toolkit
    Keith, Scott Alexander
    Amrit, Francis Raj Gandhi
    Ratnappan, Ramesh
    Ghazi, Arjumand
    METHODS, 2014, 68 (03) : 476 - 486
  • [47] RNA helicase A is important for germline transcriptional control, proliferation, and meiosis in C. elegans
    Walstrom, KM
    Schmidt, D
    Bean, CJ
    Kelly, WG
    MECHANISMS OF DEVELOPMENT, 2005, 122 (05) : 707 - 720
  • [48] Defining transcriptional networks that control molting in C. elegans and Brugia malayi.
    Ward, J. D.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [49] Global transcriptional regulation of innate immunity by ATF-7 in C. elegans
    Fletcher, Marissa
    Tillman, Erik J.
    Butty, Vincent L.
    Levine, Stuart S.
    Kim, Dennis H.
    PLOS GENETICS, 2019, 15 (02):
  • [50] Transcriptional control of cell-cycle quiescence during C. elegans development
    Clayton, Joseph E.
    van den Heuvel, Sander J. L.
    Saito, R. Mako
    DEVELOPMENTAL BIOLOGY, 2008, 313 (02) : 603 - 613