Transcriptional suppression of sphingolipid catabolism controls pathogen resistance in C. elegans

被引:3
|
作者
Nasrallah, Mohamad A. [1 ]
Peterson, Nicholas D. [1 ]
Szumel, Elizabeth S. [1 ]
Liu, Pengpeng [2 ]
Page, Amanda L. [1 ]
Tse, Samantha Y. [1 ]
Wani, Khursheed A. [1 ]
Tocheny, Claire E. [1 ]
Pukkila-Worley, Read [1 ]
机构
[1] Univ Massachusetts, Chan Med Sch, Dept Med, Program Innate Immun,Div Infect Dis & Immunol, Worcester, MA 01605 USA
[2] Univ Massachusetts, Chan Med Sch, Dept Mol Cell & Canc Biol, Worcester, MA USA
关键词
CAENORHABDITIS-ELEGANS; NUCLEAR RECEPTORS; IMMUNE-RESPONSE; NEMATODE; METABOLISM; CERAMIDE; ROLES; SPHINGOSINE-1-PHOSPHATE; SPHINGOSINE; CONTRIBUTES;
D O I
10.1371/journal.ppat.1011730
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Sphingolipids are required for diverse biological functions and are degraded by specific catabolic enzymes. However, the mechanisms that regulate sphingolipid catabolism are not known. Here we characterize a transcriptional axis that regulates sphingolipid breakdown to control resistance against bacterial infection. From an RNAi screen for transcriptional regulators of pathogen resistance in the nematode C. elegans, we identified the nuclear hormone receptor nhr-66, a ligand-gated transcription factor homologous to human hepatocyte nuclear factor 4. Tandem chromatin immunoprecipitation-sequencing and RNA sequencing experiments revealed that NHR-66 is a transcriptional repressor, which directly targets sphingolipid catabolism genes. Transcriptional de-repression of two sphingolipid catabolic enzymes in nhr-66 loss-of-function mutants drives the breakdown of sphingolipids, which enhances host susceptibility to infection with the bacterial pathogen Pseudomonas aeruginosa. These data define transcriptional control of sphingolipid catabolism in the regulation of cellular sphingolipids, a process that is necessary for pathogen resistance.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Transcriptional adaptation in C. elegans
    Le Bras, Alexandra
    LAB ANIMAL, 2020, 49 (03) : 72 - 72
  • [2] Transcriptional adaptation in C. elegans
    Alexandra Le Bras
    Lab Animal, 2020, 49 : 72 - 72
  • [3] Antagonistic paralogs control a switch between growth and pathogen resistance in C. elegans
    Reddy, Kirthi C.
    Dror, Tal
    Underwood, Ryan S.
    Osman, Guled A.
    Elder, Corrina R.
    Desjardins, Christopher A.
    Cuomo, Christina A.
    Barkoulas, Michalis
    Troemel, Emily R.
    PLOS PATHOGENS, 2019, 15 (01)
  • [4] The role of sphingolipid metabolism in lifespan and healthspan extension in C. elegans
    Radeny, Joycelyn
    Chan, Jason
    FASEB JOURNAL, 2019, 33
  • [5] A Transcriptional Lineage of the Early C. elegans Embryo
    Tintori, Sophia C.
    Nishimura, Erin Osborne
    Golden, Patrick
    Lieb, Jason D.
    Goldstein, Bob
    DEVELOPMENTAL CELL, 2016, 38 (04) : 430 - 444
  • [6] Initiation and maintenance: transcriptional autoregulation in C. elegans
    不详
    DEVELOPMENT, 2019, 146 (13):
  • [7] Genetic and Physiological Activation of Osmosensitive Gene Expression Mimics Transcriptional Signatures of Pathogen Infection in C. elegans
    Rohlfing, Anne-Katrin
    Miteva, Yana
    Hannenhalli, Sridhar
    Lamitina, Todd
    PLOS ONE, 2010, 5 (02):
  • [8] Hypoxia signaling and resistance in C. elegans
    Powell-Coffman, Jo Anne
    TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2010, 21 (07): : 435 - 440
  • [9] The nuclear hormone receptor NHR-86 controls anti-pathogen responses in C. elegans
    Peterson, Nicholas D.
    Cheesman, Hilary K.
    Liu, Pengpeng
    Anderson, Sarah M.
    Foster, Kyle J.
    Chhaya, Richa
    Perrat, Paola
    Thekkiniath, Jose
    Yang, Qiyuan
    Haynes, Cole M.
    Pukkila-Worley, Read
    PLOS GENETICS, 2019, 15 (01):
  • [10] An organismal understanding of C. elegans innate immune responses, from pathogen recognition to multigenerational resistance
    Tran, Tuan D.
    Luallen, Robert J.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2024, 154 : 77 - 84