MSTGAN: A Multi-Slot Conditional Generative Adversarial Network Based on Swin Transformer for Channel Estimation

被引:3
|
作者
Cheng, Lujie [1 ]
Zhang, Zhi [1 ]
Dong, Chen [1 ]
Liu, Sirui [1 ]
机构
[1] Beijing Univ Posts & Telecommun BUPT, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
关键词
Channel estimation; deep learning; conditional generative adversarial network; swin transformer; multi-slot;
D O I
10.1109/LCOMM.2023.3271872
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Accurate channel estimation is the key to enhance the transmission performance of communication systems. In this letter, we propose a multi-slot conditional generative adversarial network (cGAN) based on Swin Transformer called MSTGAN for channel estimation in a single-input single-output (SISO) scenario. Specifically, the proposed MSTGAN could learn the temporal correlation feature from continuous channel slots by the 3D convolution and extract the deep feature well by the Swin Transformer to improve the accuracy of channel estimation. The model is trained with data augmentation to reduce the computational cost for offline training. The simulation results demonstrate that the proposed method outperforms the linear minimum mean square error (LMMSE) method and other deep learning methods. Furthermore, extension schemes of the MSTGAN to the multiple-input multiple-output (MIMO) case are also provided.
引用
收藏
页码:1799 / 1803
页数:5
相关论文
共 50 条
  • [41] STUGAN: An Integrated Swin Transformer-Based Generative Adversarial Networks for Seismic Data Reconstruction and Denoising
    Zhang, Yan
    Zhang, Yiming
    Dong, Hongli
    Song, Liwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [42] Downlink Channel Estimation for FDD Massive MIMO Using Conditional Generative Adversarial Networks
    Banerjee, Bitan
    Elliott, Robert C.
    Krzymien, Witold A.
    Farmanbar, Hamid
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 122 - 137
  • [43] Carbon market risk estimation using quantum conditional generative adversarial network and amplitude estimation
    Zhou, Xiyuan
    Zhao, Huan
    Cao, Yuji
    Fei, Xiang
    Liang, Gaoqi
    Zhao, Junhua
    Energy Conversion and Economics, 2024, 5 (04): : 193 - 210
  • [44] Siamese conditional generative adversarial network for multi-focus image fusion
    Huaguang Li
    Wenhua Qian
    Rencan Nie
    Jinde Cao
    Dan Xu
    Applied Intelligence, 2023, 53 : 17492 - 17507
  • [45] Conditional generative adversarial network for EEG-based emotion fine-grained estimation and visualization
    Fu, Boxun
    Li, Fu
    Niu, Yi
    Wu, Hao
    Li, Yang
    Shi, Guangming
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 74
  • [46] RME-GAN: A Learning Framework for Radio Map Estimation Based on Conditional Generative Adversarial Network
    Zhang S.
    Wijesinghe A.
    Ding Z.
    IEEE Internet of Things Journal, 2023, 10 (20) : 18016 - 18027
  • [47] A MULTI-SCALE CONDITIONAL GENERATIVE ADVERSARIAL NETWORK FOR FACE SKETCH SYNTHESIS
    Bi, Hongbo
    Li, Ning
    Guan, Huaping
    Lu, Di
    Yang, Lina
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3876 - 3880
  • [48] Multi-Conditional Generative Adversarial Network for Text-to-Video Synthesis
    Zhou R.
    Jiang C.
    Xu Q.
    Li Y.
    Zhang C.
    Song Y.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (10): : 1567 - 1579
  • [49] Road Topology Refinement via a Multi-Conditional Generative Adversarial Network
    Zhang, Yang
    Li, Xiang
    Zhang, Qianyu
    SENSORS, 2019, 19 (05)
  • [50] Siamese conditional generative adversarial network for multi-focus image fusion
    Li, Huaguang
    Qian, Wenhua
    Nie, Rencan
    Cao, Jinde
    Xu, Dan
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17492 - 17507