Image super-resolution method based on attention aggregation hierarchy feature

被引:4
|
作者
Wang, Jianxin [1 ,2 ]
Zou, Yongsong [2 ]
Wu, Honglin [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Hydraul & Environm Engn, Changsha 410114, Peoples R China
来源
VISUAL COMPUTER | 2024年 / 40卷 / 04期
关键词
Super-resolution; Hierarchical features; Shift operation; Attention mechanism; NETWORK;
D O I
10.1007/s00371-023-02968-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recently, single-image super-resolution (SISR) based on convolutional neural networks (CNNs) has encountered challenges, including the presence of numerous network parameters, limited receptive field, and the inability to capture global context information. In order to address these issues, we propose an image super-resolution method based on attention aggregation hierarchy feature (AHSR), which improves the performance of the super-resolution (SR) network through the optimization of convolutional operations and the integration of effective attention modules. AHSR first uses a high-frequency filter to bypass the rich low-frequency information, allowing the main network to focus on learning the high-frequency information. In order to aggregate spatial information within the image, expand the receptive field, and extract local structural features more effectively, we propose the utilization of the shift operation with zero parameters and zero triggers instead of spatial convolution. Additionally, we introduce a multi-Dconv head transposed attention module to improve the aggregation of cross-hierarchical feature information. This approach allows us to obtain enhanced features that incorporate contextual information. Extensive experimental results show that compared to other advanced SR models, the proposed AHSR method can better recover image details with fewer model parameters and less computational complexity.
引用
收藏
页码:2655 / 2666
页数:12
相关论文
共 50 条
  • [41] MadFormer: multi-attention-driven image super-resolution method based on Transformer
    Liu, Beibei
    Sun, Jing
    Zhu, Bing
    Li, Ting
    Sun, Fuming
    MULTIMEDIA SYSTEMS, 2024, 30 (02)
  • [42] Dual Aggregation Transformer for Image Super-Resolution
    Chen, Zheng
    Zhang, Yulun
    Gu, Jinjin
    Kong, Linghe
    Yang, Xiaokang
    Yu, Fisher
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12278 - 12287
  • [43] Adaptive Attention Network for Image Super-resolution
    Chen Y.-M.
    Zhou D.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (08): : 1950 - 1960
  • [44] Face image super-resolution with an attention mechanism
    Chen X.
    Shen H.
    Bian Q.
    Wang Z.
    Tian X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 148 - 153
  • [45] Local feature extraction for image super-resolution
    Baboulaz, Loic
    Dragotti, Pier Luigi
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2653 - 2656
  • [46] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)
  • [47] Image Super-Resolution Reconstruction Based on Dense Residual Attention and Multi-Scale Feature Fusion
    Shi, Jianguo
    Xiu, Yu
    Tang, Ganyi
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (13)
  • [48] Image Super-Resolution Method Based on Dual Learning
    Qiu, Zhao
    Zhuang, Chunyu
    Liu, Lihao
    Lin, Jiale
    Yuan, Sheng
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (16)
  • [49] A method of super-resolution image restoration based on separation
    Jian, Zhang
    Fan Xiaoping
    Huang Cailun
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 275 - +
  • [50] MAP Based Super-resolution Image Reconstruction Method
    He, Panli
    Wang, Boyang
    Liu, Xiaoxia
    Han, Xiaowei
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2754 - 2757