Robust stability and boundedness of uncertain conformable fractional-order delay systems under input saturation

被引:2
|
作者
He, Danhua [1 ]
Bao, Baizeng [2 ]
Xu, Liguang [2 ]
机构
[1] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
基金
中国国家自然科学基金;
关键词
conformable fractional-order delay systems; robust boundedness; robust stability; saturation; LINEAR-SYSTEMS; RIEMANN-LIOUVILLE; STABILIZATION; SUBJECT; SYNCHRONIZATION;
D O I
10.3934/math.20231076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a class of uncertain conformable fractional-order delay systems under input saturation is considered. By establishing the Lyapunov boundedness theorem for conformable fractional-order delay systems, some sufficient conditions for robust stability and boundedness of the systems are obtained. Examples are given to illustrate the obtained theory.
引用
收藏
页码:21123 / 21137
页数:15
相关论文
共 50 条
  • [41] Robust stability of fractional-order nonlinear systems under sliding mode controller with fractional-order reaching law
    Yin, Chun
    Cheng, Yuhua
    Huang, Xuegang
    Zhong, Shouming
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 7019 - 7024
  • [42] Robust consensus of fractional-order multi-agent systems with input saturation and external disturbances
    Chen, Lin
    Wang, Yan-Wu
    Yang, Wu
    Xiao, Jiang-Wen
    NEUROCOMPUTING, 2018, 303 : 11 - 19
  • [43] Robust stability for two kinds of uncertain fractional-order systems with structured and unstructured uncertainties
    Jiao Zhuang
    Zhong Yisheng
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 2721 - 2725
  • [44] Robust functional observer design for uncertain fractional-order time-varying delay systems
    Boukal, Y.
    Zasadzinski, M.
    Darouach, M.
    Radhy, N. E.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 2741 - 2746
  • [45] Stability of impulsive delayed switched systems with conformable fractional-order derivatives
    Xu, Liguang
    Bao, Baizeng
    Hu, Hongxiao
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024,
  • [46] Stability analysis of conformable fractional-order nonlinear systems depending on a parameter
    Naifar, O.
    Rebiai, G.
    Ben Makhlouf, A.
    Hammami, M. A.
    Guezane-Lakoud, A.
    JOURNAL OF APPLIED ANALYSIS, 2020, 26 (02) : 287 - 296
  • [47] Stabilization of Fractional-Order Linear Systems with State and Input Delay
    Ammour, Amar Si
    Djennoune, Said
    Aggoune, Woihida
    Bettayeb, Maamar
    ASIAN JOURNAL OF CONTROL, 2015, 17 (05) : 1946 - 1954
  • [48] Stability Analysis of Fractional-Order Nonlinear Systems with Delay
    Wang, Yu
    Li, Tianzeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [49] Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay
    Li, Penghua
    Chen, Liping
    Wu, Ranchao
    Tenreiro Machado, J. A.
    Lopes, Antonio M.
    Yuan, Liguo
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (15): : 7749 - 7763
  • [50] Stability Region of Fractional-Order PIλDμ Controller for Fractional-Order Systems with Time Delay
    Wu, Qunhong
    Ou, Linlin
    Ni, Hongjie
    Zhang, Weidong
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1767 - 1772