A single stage knowledge distillation network for brain tumor segmentation on limited MR image modalities

被引:10
|
作者
Choi, Yoonseok [1 ]
Al-masni, Mohammed A. [1 ,2 ]
Jung, Kyu-Jin [1 ]
Yoo, Roh-Eul [3 ,4 ]
Lee, Seong-Yeong [3 ]
Kim, Dong-Hyun [1 ]
机构
[1] Yonsei Univ, Coll Engn, Dept Elect & Elect Engn, Seoul 03722, South Korea
[2] Sejong Univ, Coll Software & Convergence Technol, Daeyang AI Ctr, Dept Artificial Intelligence, Seoul 05006, South Korea
[3] Seoul Natl Univ Hosp, Dept Radiol, Seoul 03080, South Korea
[4] Seoul Natl Univ, Dept Radiol, Coll Med, Seoul 03080, South Korea
关键词
Brain tumor segmentation; Missing modality; Knowledge distillation; Barlow twins; nnU-Net; Glioblastoma;
D O I
10.1016/j.cmpb.2023.107644
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: Precisely segmenting brain tumors using multimodal Magnetic Resonance Imaging (MRI) is an essential task for early diagnosis, disease monitoring, and surgical planning. Unfortunately, the complete four image modalities utilized in the well-known BraTS benchmark dataset: T1, T2, Fluid-Attenuated Inversion Recovery (FLAIR), and T1 Contrast-Enhanced (T1CE) are not regularly acquired in clinical practice due to the high cost and long acquisition time. Rather, it is common to utilize limited image modalities for brain tumor segmentation. Methods: In this paper, we propose a single stage learning of knowledge distillation algorithm that derives information from the missing modalities for better segmentation of brain tumors. Unlike the previous works that adopted a two-stage framework to distill the knowledge from a pre-trained network into a student network, where the latter network is trained on limited image modality, we train both models simultaneously using a single-stage knowledge distillation algorithm. We transfer the information by reducing the redundancy from a teacher network trained on full image modalities to the student network using Barlow Twins loss on a latent-space level. To distill the knowledge on the pixel level, we further employ a deep supervision idea that trains the backbone networks of both teacher and student paths using Cross-Entropy loss. Results: We demonstrate that the proposed single-stage knowledge distillation approach enables improving the performance of the student network in each tumor category with overall dice scores of 91.11% for Tumor Core, 89.70% for Enhancing Tumor, and 92.20% for Whole Tumor in the case of only using the FLAIR and T1CE images, outperforming the state-of-the-art segmentation methods. Conclusions: The outcomes of this work prove the feasibility of exploiting the knowledge distillation in segmenting brain tumors using limited image modalities and hence make it closer to clinical practices. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] MR Brain Image Segmentation Based on Wavelet Transform and SOM Neural Network
    Tian, Dan
    Fan, Linan
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 4243 - 4246
  • [42] A modified probabilistic neural network for partial volume segmentation in brain MR image
    Song, Tao
    Jamshidi, Mo M.
    Lee, Roland R.
    Huang, Mingxiong
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (05): : 1424 - 1432
  • [43] Multiple Degradation and Reconstruction Network for Single Image Denoising via Knowledge Distillation
    Li, Juncheng
    Yang, Hanhui
    Yi, Qiaosi
    Fang, Faming
    Gao, Guangwei
    Zeng, Tieyong
    Zhang, Guixu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 557 - 566
  • [44] Adversarial Perturbation on MRI Modalities in Brain Tumor Segmentation
    Cheng, Guohua
    Ji, Hongli
    IEEE ACCESS, 2020, 8 : 206009 - 206015
  • [45] Segmentation of MR images for brain tumor detection using autoencoder neural network
    Hoseini, Farnaz
    Shamlou, Shohreh
    Ahmadi-Gharehtoragh, Milad
    Discover Artificial Intelligence, 2024, 4 (01):
  • [46] A Joint Graph and Image Convolution Network for Automatic Brain Tumor Segmentation
    Saueressig, Camillo
    Berkley, Adam
    Munbodh, Reshma
    Singh, Ritambhara
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 356 - 365
  • [47] Brain Tumor Image Segmentation Network Based on Dual Attention Mechanism
    He, Fuyun
    Zhang, Yao
    Wei, Yan
    Qian, Youwei
    Hu, Cong
    Tang, Xiaohu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 125 - 136
  • [48] A lightweight crack segmentation network based on knowledge distillation
    Wang, Wenjun
    Su, Chao
    Han, Guohui
    Zhang, Heng
    JOURNAL OF BUILDING ENGINEERING, 2023, 76
  • [49] A Priori Knowledge Based Deformable Surface Model for Newborn Brain MR Image Segmentation
    Kobashi, Syoji
    Hashioka, Aya
    Wakata, Yuki
    Ando, Kumiko
    Ishikura, Reiichi
    Kuramoto, Kei
    Ishikawa, Tomomoto
    Hirota, Shozo
    Hata, Yutaka
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE IN MEDICAL IMAGING (CIMI), 2013, : 1 - 5
  • [50] Brain Tumor Image Segmentation in MRI Image
    Tjahyaningtijas, Hapsari Peni Agustin
    2ND INTERNATIONAL CONFERENCE ON VOCATIONAL EDUCATION AND ELECTRICAL ENGINEERING (ICVEE), 2018, 336