On Discrete Gradient Vector Fields and Laplacians of Simplicial Complexes

被引:0
|
作者
Contreras, Ivan [1 ]
Tawfeek, Andrew [2 ]
机构
[1] Amherst Coll, Dept Math & Stat, 31 Quadrangle Dr, Amherst, MA 01002 USA
[2] Univ Washington, Dept Math, 4110 E Stevens Way NE, Seattle, WA 98195 USA
关键词
Discrete Laplacian; simplicial complexes; discrete Morse theory; discrete gradient vector fields; matchings; rooted forests; spectral graph theory; MORSE-THEORY;
D O I
10.1007/s00026-023-00655-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discrete Morse theory, a cell complex-analog to smooth Morse theory allowing homotopic tools in the discrete realm, has been developed over the past few decades since its original formulation by Robin Forman in 1998. In particular, discrete gradient vector fields on simplicial complexes capture important topological features of the structure. We prove that the characteristic polynomials of the Laplacian matrices of a simplicial complex are generating functions for discrete gradient vector fields if the complex is a triangulation of an orientable manifold. Furthermore, we provide a full characterization of the correspondence between rooted forests in higher dimensions and discrete gradient vector fields.
引用
收藏
页码:67 / 91
页数:25
相关论文
共 50 条
  • [31] Orbit spaces of gradient vector fields
    Calcut, Jack S.
    Gompf, Robert E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1732 - 1747
  • [32] Analytic vector fields and gradient field
    Lion, JM
    Moussu, R
    Sanz, F
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 525 - 534
  • [33] Spectral detection of simplicial communities via Hodge Laplacians
    Krishnagopal, Sanjukta
    Bianconi, Ginestra
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [34] Compensating Drift Vector Fields With Gradient Vector Fields for Asymptotic Submanifold Stabilization
    Montenbruck, Jan Maximilian
    Buerger, Mathias
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (02) : 388 - 399
  • [35] SIMPLICIAL PRODUCTS OF SIMPLICIAL COMPLEXES
    EILENBERG, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 70 - 70
  • [36] Sensitivity analysis of discrete preference functions using Koszul simplicial complexes
    Divason, Jose
    Mohammadi, Fatemeh
    Saenz-de-Cabezon, Eduardo
    Wynn, Henry P.
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 236 - 244
  • [37] Colorings of simplicial complexes and vector bundles over Davis–Januszkiewicz spaces
    Dietrich Notbohm
    Mathematische Zeitschrift, 2010, 266 : 399 - 405
  • [38] Simplicial Complexes
    Schmidt, Gunther
    Winter, Michael
    RELATIONAL TOPOLOGY, 2018, 2208 : 155 - 181
  • [39] Laplacians on discrete and quantum geometries
    Calcagni, Gianluca
    Oriti, Daniele
    Thuerigen, Johannes
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (12)
  • [40] Spectral Theory for Discrete Laplacians
    Dorin Ervin Dutkay
    Palle E. T. Jorgensen
    Complex Analysis and Operator Theory, 2010, 4 : 1 - 38