Design of high-performance and sustainable Co-free Ni-rich cathodes for next-generation lithium-ion batteries

被引:30
|
作者
Ge, Hao [1 ,6 ]
Shen, Zhiwen [1 ]
Wang, Yanhong [2 ]
Sun, Zhijia [3 ]
Cao, Xiaoman [3 ]
Wang, Chaoyue [4 ]
Fan, Xinyue [4 ]
Bai, Jinsong [1 ]
Li, Rundong [1 ]
Yang, Tianhua [1 ,6 ]
Wu, Gang [5 ]
机构
[1] Shenyang Aerosp Univ, Sch Energy & Environm, Shenyang, Peoples R China
[2] Shenyang Aircraft Airworthiness Certificat Ctr CA, Shenyang, Peoples R China
[3] Bohai Univ, Coll Chem & Mat Engn, Jinzhou, Peoples R China
[4] Liaoning Gen Aviat Acad, Shenyang, Peoples R China
[5] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14068 USA
[6] Shenyang Aerosp Univ, Sch Energy & Environm, Shenyang 110136, Peoples R China
来源
SUSMAT | 2024年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
Co-free cathodes; electrochemical performance; lithium-ion batteries; modification strategies; Ni-rich layered cathodes; LAYERED OXIDE CATHODES; POSITIVE ELECTRODE MATERIALS; COBALT-FREE; LI-ION; SINGLE-CRYSTAL; ELECTROCHEMICAL PROPERTIES; THERMAL-STABILITY; CYCLING STABILITY; LINIO2; CATHODE; HIGH-POWER;
D O I
10.1002/sus2.176
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Great attention has been given to high-performance and inexpensive lithium-ion batteries (LIBs) in response to the ever-increasing demand for the explosive growth of electric vehicles (EVs). High-performance and low-cost Co-free Ni-rich layered cathodes are considered one of the most favorable candidates for next-generation LIBs because the current supply chain of EVs relies heavily on scarce and expensive Co. Herein, we review the recent research progress on Co-free Ni-rich layered cathodes, emphasizing on analyzing the necessity of replacing Co and the popular improvment methods. The current advancements in the design strategies of Co-free Ni-rich layered cathodes are summarized in detail. Despite considerable improvements achieved so far, the main technical challenges contributing to the deterioration of Co-free Ni-rich cathodes such as detrimental phase transitions, crack formation, and severe interfacial side reactions, are difficult to resolve by a single technique. The cooperation of multiple modification strategies is expected to accelerate the industrialization of Co-free Ni-rich layered cathodes, and the corresponding synergistic mechanisms urgently need to be studied. More effects will be aroused to explore high-performance Co-free Ni-rich layered cathodes to promote the sustainable development of LIBs.
引用
收藏
页码:48 / 71
页数:24
相关论文
共 50 条
  • [1] Doping Strategy in Developing Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries
    Lee, Soo-Been
    Park, Nam-Yung
    Park, Geon-Tae
    Kim, Un-Hyuck
    Sohn, Sung-June
    Kang, Min-Seok
    Ribas, Rogerio M.
    Monteiro, Robson S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2024, 9 (02) : 740 - 747
  • [2] Recent progress in Co-free, Ni-rich cathode materials for lithium-ion batteries
    Hussain, Sk. Khaja
    Bang, Jin Ho
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2024, 45 (01) : 4 - 15
  • [3] Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries
    Ryu, Hoon-Hee
    Lim, Hyung-Woo
    Lee, Sin Gyu
    Sun, Yang-Kook
    NATURE ENERGY, 2024, 9 (01) : 47 - 56
  • [4] Controlled Synthesis of Single-Crystalline Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries
    Cao, Bokai
    Fang, Hai-Tao
    Li, De
    Chen, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (48) : 53667 - 53676
  • [5] Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries
    Hoon-Hee Ryu
    Hyung-Woo Lim
    Sin Gyu Lee
    Yang-Kook Sun
    Nature Energy, 2024, 9 : 47 - 56
  • [6] Microstructures of layered Ni-rich cathodes for lithium-ion batteries
    Lu, Jingyu
    Xu, Chao
    Dose, Wesley
    Dey, Sunita
    Wang, Xihao
    Wu, Yehui
    Li, Deping
    Ci, Lijie
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (09) : 4707 - 4740
  • [7] Safer, high-performance electrolytes for next-generation lithium-ion batteries
    Hamers, Robert
    Usrey, Monica
    Pena-Hueso, Adrian
    Guillot, Sarah
    West, Robert
    Pollina, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [8] Stabilizing the surface of Ni-rich cathodes via facing-target sputtering for high-performance lithium-ion batteries
    Kim, Jong Heon
    Park, Jun-Seob
    Cho, Su-Ho
    Park, Ji-Min
    Nam, Jong Seok
    Yoon, Soon-Gil
    Kim, Il-Doo
    Jung, Ji-Won
    Kim, Hyun-Suk
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (47) : 25009 - 25018
  • [9] Lithium-rich sulfide/selenide cathodes for next-generation lithium-ion batteries: challenges and perspectives
    Chen, Mingzhe
    Liu, Yunfei
    Zhang, Yanyan
    Xing, Guichuan
    Tang, Yuxin
    CHEMICAL COMMUNICATIONS, 2022, 58 (22) : 3591 - 3600
  • [10] Achieving Thermodynamic Stability of Single-Crystal Co-Free Ni-Rich Cathode Material for High Voltage Lithium-Ion Batteries
    Shen, Jixue
    Zhang, Bao
    Huang, Weiyuan
    Li, Xiao
    Xiao, Zhiming
    Wang, Jing
    Zhou, Tao
    Wen, Jianguo
    Liu, Tongchao
    Amine, Khalil
    Ou, Xing
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (23)