A Dynamic Movement Primitives-Based Tool Use Skill Learning and Transfer Framework for Robot Manipulation

被引:1
|
作者
Lu, Zhenyu [1 ]
Wang, Ning [1 ]
Yang, Chenguang [1 ,2 ]
机构
[1] Univ West England, Bristol Robot Lab, Bristol BS16 1QY, Avon, England
[2] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic movement primitives; robot learning; skill transfer; multi-tool use skill; robot manipulation; MOTION;
D O I
10.1109/TASE.2024.3370139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a framework for learning and transferring robot tool-use skills based on Dynamic Movement Primitives (DMPs) for robot fine manipulation. DMPs and their enhanced methods are employed to acquire a specific tool-use skill applicable to tools with similar sizes, shapes, and uses. However, the acquired skills may not be transferable to other scenarios and tools with variations. The new framework introduces two new types of skills based on DMPs: Object Operating (O2) skill and Tool Flipping (TF) skill. The O2 skill enables robots to handle tools for manipulating objects to achieve desired effects. The learning process for the O2 skill considers limitations imposed by tools and the environment during human demonstrations. Distinguishing between whether constraints can be modelled or not, we propose both a model-based and a constraint-based method to separate a constraint-irrelevant (CI) skill and the constrained conditions. The CI skill is generalized using a novel method called constrained -DMP lite, enabling adaptation to new tasks with special tools. The TF skill addresses situations where tools must generate an action to alter contacting positions on both objects and tools while avoiding conflicts during movement. Finally, the TF and O2 skills are generalized to be applied in creating a continuous action chain. We conduct several experiments to compare and analyze the advantages and disadvantages of the proposed methods with other approaches in terms of generalizability and calculation complexity. Note to Practitioners-Strengthening robot tool-use ability has been a hot research topic in recent years because these tools can extend the reachability and enhance the flexibility of robots. The previous research on DMPs has been utilized for learning tool-use skills. However, the learned skills few considered the tools' special use regulations, therefore the skill of using a tool is hard to transfer to another tool-use case. This paper explores tool-use skill learning and transfer between different tools by developing a framework based on the DMPs for this problem. The framework consists of two kinds of skills: O2 skill and TF skill with different purposes as well as a series of newly developed algorithms, such as constrained -DMP lite, a model-based and a constraint-based CI skill learning methods. These methods can separate the constraints from human demonstrations of using tools to achieve a CI skill and generalize the CI skill according to the constraints generated from a new tool-use manipulation task. We verify the effectiveness of the proposed framework through some typical tool-use experiments, including pushing objects, cutting and obstacle avoidance in actuality. The development of this framework can be used in industrial and house working scenarios.
引用
收藏
页码:1748 / 1763
页数:16
相关论文
共 50 条
  • [41] Learning Underwater Intervention Skills Based on Dynamic Movement Primitives
    Yang, Xuejiao
    Zhang, Yunxiu
    Li, Rongrong
    Zheng, Xinhui
    Zhang, Qifeng
    ELECTRONICS, 2024, 13 (19)
  • [42] Human-robot collaborative object transfer using human motion prediction based on Dynamic Movement Primitives
    Sidiropoulos, Antonis
    Karayiannidis, Yiannis
    Doulgeri, Zoe
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 2583 - 2588
  • [43] Generalizing kinematic skill learning to energy efficient dynamic motion planning using optimized Dynamic Movement Primitives
    Xu, Tian
    Singh, Siddharth
    Chang, Qing
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2025, 94
  • [44] Probabilistic movement primitives based multi-task learning framework
    Yue, Chengfei
    Gao, Tian
    Lu, Lang
    Lin, Tao
    Wu, Yunhua
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 191
  • [45] Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives
    Song, Caiwei
    Liu, Gangfeng
    Zhang, Xuehe
    Zang, Xizhe
    Xu, Congcong
    Zhao, Jie
    ISA TRANSACTIONS, 2020, 97 : 325 - 335
  • [46] A Novel Robot Skill Learning Framework Based on Bilateral Teleoperation
    Si, Weiyong
    Yue, Tianqi
    Guan, Yuan
    Wang, Ning
    Yang, Chenguang
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 758 - 763
  • [47] A trajectory and force dual-incremental robot skill learning and generalization framework using improved dynamical movement primitives and adaptive neural network control
    Lu, Zhenyu
    Wang, Ning
    Li, Qinchuan
    Yang, Chenguang
    NEUROCOMPUTING, 2023, 521 (146-159) : 146 - 159
  • [48] Learning from Demonstration: Dynamical Movement Primitives based Reusable Suturing Skill Modelling method
    Yang, Dewei
    Lv, Qi
    Liao, Gang
    Zheng, Kai
    Luo, Jiufei
    Wei, Bo
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 4252 - 4257
  • [49] A framework for the adaptive transfer of robot skill knowledge using reinforcement learning agents
    Malak, RJ
    Khosla, PK
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 1994 - 2001
  • [50] Human Motion Prediction in Human-Robot Handovers based on Dynamic Movement Primitives
    Widmann, Dominik
    Karayiannidis, Yiannis
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2781 - 2787