Text Attribute Control via Closed-Loop Disentanglement

被引:1
|
作者
Sha, Lei [1 ,2 ,4 ]
Lukasiewicz, Thomas [3 ]
机构
[1] Beihang Univ, Inst Artificial Intelligence, Beihang, Peoples R China
[2] Univ Oxford, Dept Comp Sci, Oxford, England
[3] Vienna Univ Technol, Inst Log & Computat, Vienna, Austria
[4] Zhongguancun Lab, Beijing, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
D O I
10.1162/tacl_a_00640
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Changing an attribute of a text without changing the content usually requires first disentangling the text into irrelevant attributes and content representations. After that, in the inference phase, the representation of one attribute is tuned to a different value, expecting that the corresponding attribute of the text can also be changed accordingly. The usual way of disentanglement is to add some constraints on the latent space of an encoder-decoder architecture, including adversarial-based constraints and mutual-information-based constraints. However, previous semi-supervised processes of attribute change are usually not enough to guarantee the success of attribute change and content preservation. In this paper, we propose a novel approach to achieve a robust control of attributes while enhancing content preservation. In this approach, we use a semi-supervised contrastive learning method to encourage the disentanglement of attributes in latent spaces. Differently from previous works, we re-disentangle the reconstructed sentence and compare the re-disentangled latent space with the original latent space, which makes a closed-loop disentanglement process. This also helps content preservation. In addition, the contrastive learning method is also able to replace the role of minimizing mutual information and adversarial training in the disentanglement process, which alleviates the computation cost. We conducted experiments on three text datasets, including the Yelp Service review dataset, the Amazon Product review dataset, and the GoEmotions dataset. The experimental results show the effectiveness of our model.
引用
收藏
页码:190 / 209
页数:20
相关论文
共 50 条
  • [21] Closed-loop control of a prosthetic finger via evoked proprioceptive information
    Vargas, Luis
    Huang, He
    Zhu, Yong
    Hu, Xiaogang
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (06)
  • [22] Controlling chaotic discrete system via the improved closed-loop control
    Department of Mathematics, Fudan University, Shanghai 200433, China
    Communications in Nonlinear Science and Numerical Simulation, 1998, 3 (03): : 134 - 139
  • [23] CLOSED-LOOP CONTROL OF URBAN TRAFFIC
    RHEE, SY
    YARDENI, A
    MCAULIFFE, R
    OPERATIONS RESEARCH, 1961, 9 : B135 - B135
  • [24] Closed-loop control of artificial respiration
    Tehrani, FT
    Roum, JH
    WESCON - 96, CONFERENCE PROCEEDINGS, 1996, : 253 - 258
  • [25] A MICROCONTROLLER FOR CLOSED-LOOP MOTION CONTROL
    DALAY, BS
    PARKIN, RM
    MICROPROCESSORS AND MICROSYSTEMS, 1991, 15 (09) : 473 - 480
  • [26] Closed-loop control of propofol anaesthesia
    Kenny, GNC
    Mantzaridis, H
    BRITISH JOURNAL OF ANAESTHESIA, 1999, 83 (02) : 223 - 228
  • [27] Multitasked closed-loop control in anesthesia
    Gentilini, A
    Frei, CW
    Glattfedler, AH
    Morari, M
    Sieber, TJ
    Wymann, R
    Schnider, TW
    Zbinden, AM
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (01): : 39 - 53
  • [28] Closed-loop control of analgesia in humans
    Gentilini, A
    Morari, M
    Bieniok, C
    Wymann, R
    Schnider, TW
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 861 - 866
  • [29] Closed-Loop Stall Control System
    Poggie, Jonathan
    Tilmann, Carl P.
    Flick, Peter M.
    Silkey, Joseph S.
    Osborne, Bradley A.
    Ervin, Gregory
    Maric, Dragan
    JOURNAL OF AIRCRAFT, 2010, 47 (05): : 1747 - 1755
  • [30] METHOD OF CLOSED-LOOP DIGITAL CONTROL
    MONTGOMERIE, GA
    KEELING, GW
    MAY, D
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1969, 116 (08): : 1445 - +