Two-Stage Deep Convolutional Neural Networks for DOA Estimation in Impulsive Noise

被引:2
|
作者
Cai, Ruiyan [1 ]
Tian, Quan [1 ]
机构
[1] Taizhou Univ, Sch Elect & Informat Engn, Taizhou 318000, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Direction-of-arrival estimation; Signal processing algorithms; Decoding; Antenna arrays; Convolutional neural networks; Array signal processing; Adversarial learning; deep convolutional neural network; direction of arrival (DOA); impulsive noise; MIMO RADAR; ALGORITHM; CORRENTROPY; ESPRIT;
D O I
10.1109/TAP.2023.3332502
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Direction-of-arrival (DOA) estimation methods have been widely and deeply studied in Gaussian noise environments. However, if there is impulsive channel noise, the performance of the method will significantly decline, and reasonable results may not be obtained. Considering that the high performance of model-driven DOA estimation algorithms requires large arrays and more sample data, this communication proposes a two-stage deep convolutional neural network (TSDCN) algorithm for DOA estimation. The first stage suppresses alpha-stable distributed impulsive noise through an adversarial learning network, and the second stage realizes DOA estimation through a deep convolutional neural network. Simulation and real-world experiments show that the TSDCN outperforms most DOA estimation algorithms in terms of robustness and estimation accuracy in impulsive noise environments.
引用
收藏
页码:2047 / 2051
页数:5
相关论文
共 50 条
  • [41] Fabric defect detection based on a deep convolutional neural network using a two-stage strategy
    Jun, Xiang
    Wang, Jingan
    Zhou, Jian
    Meng, Shuo
    Pan, Ruru
    Gao, Weidong
    TEXTILE RESEARCH JOURNAL, 2021, 91 (1-2) : 130 - 142
  • [42] Unconstrained Age Estimation with Deep Convolutional Neural Networks
    Ranjan, Rajeev
    Zhou, Sabrina
    Chen, Jun Cheng
    Kumar, Amit
    Alavi, Azadeh
    Patel, Vishal M.
    Chellappa, Rama
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 351 - 359
  • [43] Two-stage dereverberation with integrated reverberation and noise estimation
    Sugiyama, Akihiko
    Gattoni, Lucas
    2006 IEEE 12TH DIGITAL SIGNAL PROCESSING WORKSHOP & 4TH IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, 2006, : 322 - 327
  • [44] Two-stage video-based convolutional neural networks for adult spinal deformity classification
    Chen, Kaixu
    Asada, Tomoyuki
    Ienaga, Naoto
    Miura, Kousei
    Sakashita, Kotaro
    Sunami, Takahiro
    Kadone, Hideki
    Yamazaki, Masashi
    Kuroda, Yoshihiro
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [45] Fully Automatic Aortic Valve Landmarks Detection with Two-stage Based Convolutional Neural Networks
    Ma, Qixiang
    Lemarchand, Leo
    Chan-Sock-Line, Diane
    Rigal, Louis
    Simon, Antoine
    Haigron, Pascal
    MEDICAL IMAGING 2023, 2023, 12464
  • [46] Fully Automated Pancreas Segmentation with Two-Stage 3D Convolutional Neural Networks
    Zhao, Ningning
    Tong, Nuo
    Ruan, Dan
    Sheng, Ke
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 201 - 209
  • [47] TWO-STAGE POOLING OF DEEP CONVOLUTIONAL FEATURES FOR IMAGE RETRIEVAL
    Zhi, Tiancheng
    Duan, Ling-Yu
    Wang, Yitong
    Huang, Tiejun
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2465 - 2469
  • [48] A Convolutional Neural Network based Two-stage Document Deblurring
    Jiao, Jile
    Sun, Jun
    Satoshi, Naoi
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 703 - 707
  • [49] Robust DoA Estimation Using Denoising Autoencoder and Deep Neural Networks
    Chen, Dawei
    Shi, Shuo
    Gu, Xuemai
    Shim, Byonghyo
    IEEE ACCESS, 2022, 10 : 52551 - 52564
  • [50] Robust direction of arrival (DOA) estimation using RBF neural network in impulsive noise enviromnent
    Tang, H
    Qiu, TS
    Li, S
    Guo, Y
    Zhang, WR
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 332 - 337