Phase Diagram of the Ashkin-Teller Model

被引:4
|
作者
Aoun, Yacine [1 ]
Dober, Moritz [2 ]
Glazman, Alexander [3 ]
机构
[1] Univ Geneva, Geneva, Switzerland
[2] Univ Vienna, Vienna, Austria
[3] Univ Innsbruck, Innsbruck, Austria
基金
奥地利科学基金会; 瑞士国家科学基金会;
关键词
RANDOM-CLUSTER; CORRELATION INEQUALITIES; BERNOULLI PERCOLATION; TRANSITION; REPRESENTATION; UNIQUENESS; SHARPNESS; LATTICES; PROOF; ICE;
D O I
10.1007/s00220-023-04925-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Ashkin-Teller model is a pair of interacting Ising models and has two parameters: J is a coupling constant in the Ising models and U describes the strength of the interaction between them. In the ferromagnetic case J,U >0 on the square lattice, we establish a complete phase diagram conjectured in physics in 1970s (by Kadanoff and Wegner, Wu and Lin, Baxter and others): when J<U, the transitions for the Ising spins and their products occur at two distinct curves that are dual to each other; when J >= U, both transitions occur at the self-dual curve. All transitions are shown to be sharp using the OSSS inequality. We use a finite-size criterion argument and continuity to extend the result of Glazman and Peled (Electron J Probab 28:1-53, 2023) from a self-dual point to its neighborhood. Our proofs go through the random-cluster representation of the Ashkin-Teller model introduced by Chayes-Machta and Pfister-Velenik and we rely on couplings to FK-percolation.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] New Baxter phase in the Ashkin-Teller model on a cubic lattice
    Santos, J. P.
    Rosa, D. S.
    Sa Barreto, F. C.
    PHYSICS LETTERS A, 2018, 382 (05) : 272 - 275
  • [32] Kinetic Ashkin-Teller model with competing dynamics
    Bekhechi, S
    Benyoussef, A
    Ettaki, B
    Loulidi, M
    El Kenz, A
    Hontinfinde, F
    PHYSICAL REVIEW E, 2001, 64 (01) : 7 - 016134
  • [33] Monte Carlo simulations of the Ashkin-Teller model
    Debski, L.
    Journal of Engineering and Applied Science, 2000, 97 (05): : 859 - 862
  • [34] FINITE SIZE STUDIES OF THE ASHKIN-TELLER MODEL
    ALCARAZ, FC
    DEFELICIO, JRD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12): : L651 - L655
  • [35] Multicritical phase diagram of the three-dimensional Ashkin-Teller model including metastable and unstable phases
    Santos, J. P.
    Avila, J. A. J.
    Rosa, D. S.
    Francisco, R. M.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 469 : 35 - 39
  • [36] PHASE-DIAGRAM OF SELENIUM ADSORBED ON THE NI(100) SURFACE - A PHYSICAL REALIZATION OF THE ASHKIN-TELLER MODEL
    BAK, P
    KLEBAN, P
    UNERTL, WN
    OCHAB, J
    AKINCI, G
    BARTELT, NC
    EINSTEIN, TL
    PHYSICAL REVIEW LETTERS, 1985, 54 (14) : 1539 - 1542
  • [37] Monte Carlo simulations of the Ashkin-Teller model
    Debski, L
    ACTA PHYSICA POLONICA A, 2000, 97 (05) : 859 - 862
  • [38] QUANTUM ASHKIN-TELLER MODEL AND CONFORMAL THEORY
    ZHANG, HY
    XU, BW
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1993, 20 (04) : 485 - 488
  • [39] SELF-TRIALITY OF THE ASHKIN-TELLER MODEL
    DEFELICIO, JRD
    LIBERO, V
    PHYSICAL REVIEW LETTERS, 1983, 51 (24) : 2230 - 2230
  • [40] Anisotropic Ashkin-Teller model in a transverse field
    Bahmad, L
    Benyoussef, A
    Ez-Zahraouy, H
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2001, 226 (02): : 403 - 411