Structure Optimization of Some Single-Ion Conducting Polymer Electrolytes with Increased Conductivity Used in "Beyond Lithium-Ion" Batteries

被引:1
|
作者
Butnicu, Dan [1 ]
Ionescu, Daniela [2 ]
Kovaci, Maria [3 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Fac Elect Telecommun & Informat Technol, Dept Basics Elect, Carol I Blvd 11, Iasi 700506, Romania
[2] Gheorghe Asachi Tech Univ Iasi, Fac Elect Telecommun & Informat Technol, Dept Telecommun & Informat Technol, Carol I Blvd 11, Iasi 700506, Romania
[3] Politehn Univ Timisoara, Fac Elect Telecommun & Informat Technol, Dept Commun, V Parvan Blvd 2, Timisoara 300223, Romania
关键词
beyond Li-ion batteries; gel polymer electrolyte; conductivity; dopant; simulation; modified coarse-grained molecular model; double-parametrical analysis;
D O I
10.3390/polym16030368
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Simulation techniques implemented with the HFSS program were used for structure optimization from the point of view of increasing the conductivity of the batteries' electrolytes. Our analysis was focused on reliable "beyond lithium-ion" batteries, using single-ion conducting polymer electrolytes, in a gel variant. Their conductivity can be increased by tuning and correlating the internal parameters of the structure. Materials in the battery system were modeled at the nanoscale with HFSS: electrodes-electrolyte-moving ions. Some new materials reported in the literature were studied, like poly(ethylene glycol) dimethacrylate-x-styrene sulfonate (PEGDMA-SS) or PU-TFMSI for the electrolyte; p-dopable polytriphenyl amine for cathodes in Na-ion batteries or sulfur cathodes in Mg-ion or Al-ion batteries. The coarse-grained molecular dynamics model combined with the atomistic model were both considered for structural simulation at the molecular level. Issues like interaction forces at the nanoscopic scale, charge carrier mobility, conductivity in the cell, and energy density of the electrodes were implied in the analysis. The results were compared to the reported experimental data, to confirm the method and for error analysis. For the real structures of gel polymer electrolytes, this method can indicate that their conductivity increases up to 15%, and even up to 26% in the resonant cases, via parameter correlation. The tuning and control of material properties becomes a problem of structure optimization, solved with non-invasive simulation methods, in agreement with the experiment.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity
    Lechartier, Marine
    Porcarelli, Luca
    Zhu, Haijin
    Forsyth, Maria
    Gueguen, Aurelie
    Castro, Laurent
    Mecerreyes, David
    MATERIALS ADVANCES, 2022, 3 (02): : 1139 - 1151
  • [22] Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries
    Meziane, Rachid
    Bonnet, Jean-Pierre
    Courty, Matthieu
    Djellab, Karim
    Armand, Michel
    ELECTROCHIMICA ACTA, 2011, 57 : 14 - 19
  • [23] A Metal-Organic Framework-Modified Single-Ion Conducting Solid Polymer Electrolyte for Lithium-Ion Batteries
    Liu, Qiang
    Wang, Haihua
    Liu, Xuan
    Liu, Lijian
    Niu, Huizhu
    Sun, Liyu
    Cao, Rui
    Wang, Dong
    Kang, Yong-Mook
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (14): : 8008 - 8016
  • [24] Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries
    Deng, Kuirong
    Wang, Shuanjin
    Ren, Shan
    Han, Dongmei
    Xiao, Min
    Meng, Yuezhong
    JOURNAL OF POWER SOURCES, 2017, 360 : 98 - 105
  • [25] Polyvinyl formal based single-ion conductor membranes as polymer electrolytes for lithium ion batteries
    Lian, Fang
    Guan, Hong-yan
    Wen, Yan
    Pan, Xiao-rong
    JOURNAL OF MEMBRANE SCIENCE, 2014, 469 : 67 - 72
  • [26] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Yoon, Jeong Hoon
    Cho, Won-Jang
    Kang, Tae hui
    Lee, Minjae
    Yi, Gi-Ra
    MACROMOLECULAR RESEARCH, 2021, 29 (08) : 509 - 518
  • [27] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Jeong Hoon Yoon
    Won-Jang Cho
    Tae Hui Kang
    Minjae Lee
    Gi-Ra Yi
    Macromolecular Research, 2021, 29 : 509 - 518
  • [28] Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries
    Yu, Yang
    Lu, Fei
    Sun, Na
    Wu, Aoli
    Pan, Wei
    Zheng, Liqiang
    SOFT MATTER, 2018, 14 (30) : 6313 - 6319
  • [29] A New Conducting Polymer for Lithium-Ion Batteries
    Basistaya, A. O.
    Karushev, M. P.
    Chepurnaya, I. A.
    Bykov, V. A.
    Timonov, A. M.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (01) : 77 - 79
  • [30] Lithiated Nafion membrane as a single-ion conducting polymer electrolyte in lithium batteries
    Lucia Mazzapioda
    Francesco Piccolo
    Alessandra Del Giudice
    Laura Silvestri
    Maria Assunta Navarra
    Materials for Renewable and Sustainable Energy, 2024, 13 : 59 - 68