Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors

被引:2
|
作者
Zhang, Yazhen [1 ]
Wang, Liyuan [2 ]
Kong, Xiangrui [1 ]
Chen, Zhihui [1 ]
Zhong, Sitong [1 ]
Li, Xinlei [1 ]
Shan, Ruiyang [1 ]
You, Xiaomei [1 ]
Wei, Kang [2 ]
Chen, Changsong [1 ]
机构
[1] Fujian Acad Agr Sci, Tea Res Inst, Fuzhou 350012, Peoples R China
[2] Chinese Acad Agr Sci TRICAAS, Minist Agr, Natl Ctr Tea Improvement, Key Lab Tea Biol & Resources Utilizat,Tea Res Inst, Hangzhou 310008, Peoples R China
关键词
Camellia sinensis; leaf color; metabolome; transcriptome; lipid; flavonoid; ANTHOCYANIN BIOSYNTHESIS; SUBSTRATE; GLYCOSYLTRANSFERASES; PROANTHOCYANIDINS; ACYLTRANSFERASE; ACCUMULATION;
D O I
10.3390/ijms25010242
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Spectral characterization and LAI modelling for the tea (Camellia sinensis (L.) O.!Kuntze) canopy
    Rajapakse, RMSS
    Tripathi, NK
    Honda, K
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (18) : 3569 - 3577
  • [32] Molecular and physiological mechanisms of tea (Camellia sinensis (L.) O. Kuntze) leaf and root in response to nitrogen deficiency
    Zheng-He Lin
    Chang-Song Chen
    Shui-Qing Zhao
    Yuan Liu
    Qiu-Sheng Zhong
    Qi-Chun Ruan
    Zhi-Hui Chen
    Xiao-Mei You
    Rui-Yang Shan
    Xin-Lei Li
    Ya-Zhen Zhang
    BMC Genomics, 24
  • [33] Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves
    Yang, Xiao
    Yu, Zhi
    Zhang, Beibei
    Huang, Jin
    Zhang, Yuehua
    Fang, Fengxiang
    Li, Chunlei
    Zhu, Hongkai
    Chen, Yuqiong
    SCIENTIA HORTICULTURAE, 2015, 184 : 78 - 84
  • [34] Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
    Anburaj Jeyaraj
    Viswanathan Chandran
    Prabu Gajjeraman
    Plant Cell Reports, 2014, 33 : 1053 - 1069
  • [35] Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
    Jeyaraj, Anburaj
    Chandran, Viswanathan
    Gajjeraman, Prabu
    PLANT CELL REPORTS, 2014, 33 (07) : 1053 - 1069
  • [36] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    van Breda, Shane V.
    van der Merwe, Chris F.
    Robbertse, Hannes
    Apostolides, Zeno
    PLANTA, 2013, 237 (03) : 849 - 858
  • [37] Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency
    Netto L.A.
    Jayaram K.M.
    Puthur J.T.
    Physiology and Molecular Biology of Plants, 2010, 16 (4) : 359 - 367
  • [38] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    Shane V. van Breda
    Chris F. van der Merwe
    Hannes Robbertse
    Zeno Apostolides
    Planta, 2013, 237 : 849 - 858
  • [39] Purification and partial characterization of β-glucosidase from fresh leaves of tea plants (Camellia sinensis (L.) O. Kuntze)
    Li, YY
    Jiang, CJ
    Wan, XC
    Zhang, ZZ
    Li, DX
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2005, 37 (06) : 363 - 370
  • [40] Subcellular Localization of Galloylated Catechins in Tea Plants [Camellia sinensis (L.) O. Kuntze] Assessed via Immunohistochemistry
    Xu, Huanhuan
    Wang, Ya
    Chen, Yana
    Zhang, Pan
    Zhao, Yi
    Huang, Yewei
    Wang, Xuanjun
    Sheng, Jun
    FRONTIERS IN PLANT SCIENCE, 2016, 7