Observation of D2 molecule line emission after massive D2 injection into runaway electron plateaus in DIII-D

被引:2
|
作者
Hollmann, E. M. [1 ]
Herfindal, J. L. [2 ]
Mclean, A. [3 ]
Pigarov, A. Yu. [4 ]
Shiraki, D. [2 ]
Wilcox, R. S. [2 ]
机构
[1] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[3] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
[4] CompX Corp, POB 2672, Del Mar, CA 92014 USA
关键词
COLLISIONAL-RADIATIVE MODEL; CROSS-SECTIONS; HYDROGEN; PLASMA; DEUTERIUM; H-2; TEMPERATURES; POPULATION; IONIZATION; ATOMS;
D O I
10.1063/5.0162644
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Molecular deuterium line emission is observed in both the visible and ultraviolet (UV) wavelength ranges after massive (> 100 Torr-L) injection of D-2 gas into post-disruption runaway electron (RE) dominated plasmas in the DIII-D tokamak. D-2 UV line emission is found to be the dominant source of radiated power, surpassing D Ly alpha. Interpretive modeling with a collisional-radiative model (CRM) indicates that D-2 radiation surpasses D radiation because Ly alpha is strongly trapped, while D-2 UV lines are mostly untrapped. The CRM also indicates that the D-2 line emission is completely dominated by RE impact (rather than thermal electron impact), so the D-2 line emission can serve as a good diagnostic for the spatial localization of REs. Analysis of D-2 visible lines indicates that the D-2 molecules in the plasma are thermally equilibrated with the background plasma, with vibrational, rotational, and kinetic temperatures all near 0.3 eV. D-2 spectroscopy therefore serves as a convenient diagnostic of background plasma temperature. Measurement of D-2 radiated power also appears to serve as a useful diagnostic for constraining neutral transport modeling.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Novel rapid shutdown strategies for runaway electron suppression in DIII-D
    Commaux, N.
    Baylor, L. R.
    Combs, S. K.
    Eidietis, N. W.
    Evans, T. E.
    Foust, C. R.
    Hollmann, E. M.
    Humphreys, D. A.
    Izzo, V. A.
    James, A. N.
    Jernigan, T. C.
    Meitner, S. J.
    Parks, P. B.
    Wesley, J. C.
    Yu, J. H.
    NUCLEAR FUSION, 2011, 51 (10)
  • [22] 2D tomography with bolometry in DIII-D
    Leonard, A.W.
    Meyer, W.H.
    Geer, B.
    Behne, D.M.
    Hill, D.N.
    Review of Scientific Instruments, 1995, 66 (1 pt 2):
  • [23] 2D TOMOGRAPHY WITH BOLOMETRY IN DIII-D
    LEONARD, AW
    MEYER, WH
    GEER, B
    BEHNE, DM
    HILL, DN
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (02): : 1201 - 1204
  • [24] From antipsychotic to D2 antagonists and D2 partial agonists
    Stahl, S.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2014, 24 : S152 - S152
  • [25] 2D turbulence imaging in DIII-D via beam emission spectroscopy
    Fenzi, C
    Fonck, RJ
    Jakubowski, M
    Mc Kee, GR
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 988 - 991
  • [26] Utilization of D2 molecular band emission for electron density measurement
    Nishijima, D.
    Baldwin, M. J.
    Chang, F.
    Hwangbo, D.
    Tynan, G. R.
    NUCLEAR MATERIALS AND ENERGY, 2024, 41
  • [27] 苏醒D2
    侯梦菲
    课堂内外创新作文(高中版), 2014, (04) : 31 - 31
  • [28] Massive gas injection systems for disruption mitigation on the DIII-D tokamak
    Jernigan, T. C.
    Baylor, L. A.
    Combs, S. K.
    Humphreys, D. A.
    Parks, P. B.
    Wesley, J. C.
    21ST IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING - SOFE 05, 2006, : 567 - 569
  • [29] On the bound of d2
    Moh, T. T.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (01) : 211 - 220
  • [30] 戏D2
    矫雪乔
    课堂内外创新作文(高中版), 2015, (04) : 31 - 31