Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in SnTe by Alloying with MnSb2Se4

被引:11
|
作者
Peng, Panpan [1 ]
Wang, Chao [1 ]
Cui, Shengqiang [1 ]
Wang, Chunhui [1 ]
Chen, Jing [2 ]
Hao, Min [1 ]
Huang, Xudong [1 ]
Wang, Xinxin [1 ]
Wang, Yajing [1 ]
Cheng, Zhenxiang [3 ]
Wang, Jianli [1 ,3 ]
机构
[1] Henan Univ, Inst Computat Mat Sci, Sch Phys & Elect, Kaifeng 475004, Peoples R China
[2] Zhengzhou Univ Light Ind, Dept Technol & Phys, Zhengzhou 450002, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Innovat Campus, North Wollongong 2522, Australia
关键词
SnTe; thermoelectric; secondary phases; vacancy; valence band convergence; P-TYPE SNTE; BAND; SCATTERING; POWER; ENHANCEMENT; GETE; PBTE;
D O I
10.1021/acsami.3c09995
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The manipulation of defect chemistry is crucial in the design of high-performance thermoelectric materials. Studies have demonstrated that alloying compounds within the I-V-VI2 family, such as AgSbTe2, NaSbTe2, etc., can effectively enhance the thermoelectric performance of SnTe by controlling the hole concentration and reducing the lattice thermal conductivity. In this paper, samples of SnTe alloyed with MnSb2Se4 were prepared, and the microstructure, electrical properties, and thermal properties were thoroughly investigated. Based on SEM and TEM analysis, it was observed that MnSb2Se4 can dissolve into SnTe during the preparation of the samples, which leads to the formation of various secondary phases with different compositions and point defects. Consequently, the lattice thermal conductivity is reduced to 0.44 W m(-1) K-1 at 800 K, approaching the amorphous limit. Furthermore, the diffusion of the Mn and Sb elements leads to a significant improvement in the Seebeck coefficient through valence band convergence. The vacancy concentration in SnTe can also be modulated by alloying with MnSb2Se4. The findings indicated that MnSb2Se4 alloying can enhance the thermoelectric performance of SnTe through increasing the vacancy concentration, promoting valence band convergence, and introducing secondary phases. Consequently, a ZT value of 1.36 at 800 K for Sn1.03Te-5%MnSb2Se4 can be achieved.
引用
收藏
页码:45016 / 45025
页数:10
相关论文
共 50 条
  • [31] Ultralow thermal conductivity and high thermoelectric performance in a new composite structure
    Kleinke, Holger
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [32] Physical Insights on the Thermoelectric Performance of Cs2SnBr6 with Ultralow Lattice Thermal Conductivity
    Zeng, Xiangyu
    Jiang, Jutao
    Niu, Guangming
    Sui, Laizhi
    Zhang, Yutong
    Wang, Xiaowei
    Liu, Xin
    Chen, Anmin
    Jin, Mingxing
    Yuan, Kaijun
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (41): : 9736 - 9744
  • [33] Ultralow lattice thermal conductivity and anisotropic thermoelectric performance of AA stacked SnSe bilayer
    Nag, Shagun
    Saini, Anuradha
    Singh, Ranber
    Kumar, Ranjan
    APPLIED SURFACE SCIENCE, 2020, 512
  • [34] Ultralow lattice thermal conductivity and high thermoelectric performance of penta-Sb2C monolayer: A first principles study
    Liu, Xin
    Zhang, Dingbo
    Wang, Hui
    Chen, Yuanzheng
    Wang, Hongyan
    Ni, Yuxiang
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (18)
  • [35] Ultralow lattice thermal conductivity and high thermoelectric performance of the WS2/WTe2 van der Waals superlattice
    Hu, Rui
    Zhou, Zizhen
    Sheng, Caiyu
    Han, Shihao
    Yuan, Hongmei
    Liu, Huijun
    PHYSICS LETTERS A, 2022, 430
  • [36] Ultralow Lattice Thermal Conductivity and Extraordinary Thermoelectric Performance in Highly Disordered CuIn7Se11 Layered Compound
    Yang, Zhen
    Zi, Peng
    Liu, Keke
    Luo, Hao
    Bai, Hui
    Chen, Shuo
    Wu, Jinsong
    Su, Xianli
    Uher, Ctirad
    Zhang, Qingjie
    Tang, Xinfeng
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (08)
  • [37] Physical insights into the ultralow lattice thermal conductivity and high thermoelectric performance of bulk LiMTe2 (M = Al, Ga)
    Mandal, Sampad
    Sarkar, Pranab
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (40) : 13691 - 13706
  • [38] Enhanced Power Factor and Ultralow Lattice Thermal Conductivity Induced High Thermoelectric Performance of BiCuTeO/BiCuSeO Superlattice
    Yang, Xuewen
    Sun, Zhiqian
    Ge, Guixian
    Yang, Jueming
    MATERIALS, 2023, 16 (12)
  • [39] Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag
    Bang-Zhou Tian
    Xu-Ping Jiang
    Jie Chen
    Han Gao
    Ze-Gao Wang
    Jun Tang
    Da-Li Zhou
    Lei Yang
    Zhi-Gang Chen
    Rare Metals, 2022, 41 : 86 - 95
  • [40] Ultralow Thermal Conductivity and High Thermoelectric Performance of ?-GeSe: Effects of Dimensionality and Thickness
    Minhas, Harpriya
    Das, Sandeep
    Pathak, Biswarup
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (08): : 9914 - 9928