Pore-scale investigation on dissolution and precipitation considering secondary reaction in porous media by LBM

被引:5
|
作者
Hao, H. [1 ]
Xu, Z. G. [2 ]
机构
[1] Shanghai Jiao Tong Univ, China UK Low Carbon Coll, Shanghai 201306, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
来源
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Porous media; Secondary reaction; Lattice Boltzmann method; MRT operator; Dissolution and precipitation; LATTICE BOLTZMANN METHOD; MECHANICAL-PROPERTIES; SIMULATION; TRANSPORT; SHALE; PERMEABILITY; FLOW;
D O I
10.1016/j.jgsce.2023.204893
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Secondary reaction happens during dissolution and precipitation when developing shale oil resources by CO2 injection. The reactive transport process considering secondary reaction based on two-dimensional porous media is numerically researched by the lattice Boltzmann method (LBM) with the multiple-reaction boundary condition in this study. The velocity is obtained with the multiple relaxation time (MRT) operator, while the temperature and concentration are obtained with the BGK operator. The qualitative impacts of the Peclet number, pore morphology and the equilibrium constant for the secondary reaction are investigated respectively and the cases with and without the secondary reaction are compared. It is found that high Peclet number, porosity and equilibrium constant for the secondary reaction have positive impacts on quick thorough solid dissolution. The time for thorough dissolution with the secondary reaction is 3.33 times as long as that without the secondary reaction. A low Peclet number and the existence of secondary reaction lead to a small horizontal range where the dissolution happens. The equilibrium constant for the secondary reaction does not affect the dissolution pattern. The generated secondary precipitation is ununiformly distributed on the solid-fluid interface and the maximum percentage of its volume to the total solid volume is only 0.84%. Both the maximum volume of the secondary precipitation and its corresponding time increase with decreasing Peclet number or the equilibrium constant. The position corresponding to the maximum temperature coincides with the reaction zone. The maximum raised temperature without the secondary reaction is 2.9 times higher than that with the secondary reaction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Pore-scale modeling of competitive adsorption in porous media
    Ryan, Emily M.
    Tartakovsky, Alexandre M.
    Amon, Cristina
    JOURNAL OF CONTAMINANT HYDROLOGY, 2011, 120-21 : 56 - 78
  • [42] PORE-SCALE VISCOUS FINGERING IN POROUS-MEDIA
    CHEN, JD
    WILKINSON, D
    PHYSICAL REVIEW LETTERS, 1985, 55 (18) : 1892 - 1895
  • [43] Pore-Scale Modeling of Nucleation and Growth in Porous Media
    Fazeli, Hossein
    Masoudi, Mohammad
    Patel, Ravi A.
    Aagaard, Per
    Hellevang, Helge
    ACS EARTH AND SPACE CHEMISTRY, 2020, 4 (02): : 249 - 260
  • [44] Pore-scale modeling of dispersion in disordered porous media
    Ovaysi, Saeed
    Piri, Mohammad
    JOURNAL OF CONTAMINANT HYDROLOGY, 2011, 124 (1-4) : 68 - 81
  • [45] Pore-Scale Study on Convective Drying of Porous Media
    Fei, Linlin
    Qin, Feifei
    Zhao, Jianlin
    Derome, Dominique
    Carmeliet, Jan
    LANGMUIR, 2022, 38 (19) : 6023 - 6035
  • [46] Pore-scale modeling of phase change in porous media
    Cueto-Felgueroso, Luis
    Fu, Xiaojing
    Juanes, Ruben
    PHYSICAL REVIEW FLUIDS, 2018, 3 (08):
  • [47] Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation
    Chen, Li
    Kang, Qinjun
    Tang, Qing
    Robinson, Bruce A.
    He, Ya-Ling
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 85 : 935 - 949
  • [48] Pore-Scale Modeling of Reactive Transport with Coupled Mineral Dissolution and Precipitation
    Wang, Ziyan
    Hu, Mengsu
    Steefel, Carl
    WATER RESOURCES RESEARCH, 2024, 60 (06)
  • [49] Pore-scale investigation on occurrence characteristics and conformance control mechanisms of emulsion in porous media
    Su Hang
    Zhou Fujian
    Liu Yang
    Gao Yajun
    Cheng Baoyang
    Dong Rencheng
    Liang Tianbo
    Li Junjian
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2021, 48 (06) : 1430 - 1439
  • [50] Pore-scale investigation on occurrence characteristics and conformance control mechanisms of emulsion in porous media
    Su H.
    Zhou F.
    Liu Y.
    Gao Y.
    Cheng B.
    Dong R.
    Liang T.
    Li J.
    Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 2021, 48 (06): : 1241 - 1249