Ensemble Deep Learning Approach with Attention Mechanism for COVID-19 Detection and Prediction

被引:0
|
作者
Arya, Monika [1 ]
Motwani, Anand [2 ]
Sar, Sumit Kumar [1 ]
Choudhary, Chaitali [1 ]
机构
[1] Bhilai Inst Technol, Dept Comp Sci & Engn, Durg, India
[2] VIT Bhopal Univ, Sch Comp Sci & Engn, Sehore, Madhya Pradesh, India
关键词
D O I
10.1007/978-981-19-6068-0_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
New coronavirus (COVID-19), which first appeared in Wuhan City and is now rapidly disseminating worldwide, may be predicted, diagnosed, and treated with the help of cutting-edge medical technology, such as artificial intelligence and machine learning algorithms. To detect COVID-19, we suggested an Ensemble deep learning method with an attention mechanism. The suggested approach uses an ensemble of RNN and CNN to extract features from data from diverse sources, such as CT scan pictures and blood test results. For image and video processing, CNNs are the most effective. RNNs, on the other hand, use text and speech data to extract features. Further, an attention mechanism is used to determine which features are most relevant for classification. Finally, the deep learning network utilizes the selected features for detection and prediction. As a result, data can be used to forecast future medical needs.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 50 条
  • [31] The ensemble deep learning model for novel COVID-19 on CT images
    Zhou Tao
    Lu Huiling
    Yang Zaoli
    Qiu Shi
    Huo Bingqiang
    Dong Yali
    APPLIED SOFT COMPUTING, 2021, 98
  • [32] Early prediction of COVID-19 using ensemble of transfer learning.
    Roy, Pradeep Kumar
    Kumar, Abhinav
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [33] CODENET: A deep learning model for COVID-19 detection
    Ju H.
    Cui Y.
    Su Q.
    Juan L.
    Manavalan B.
    Computers in Biology and Medicine, 2024, 171
  • [34] A survey on deep learning models for detection of COVID-19
    Mozaffari, Javad
    Amirkhani, Abdollah
    Shokouhi, Shahriar B.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 16945 - 16973
  • [35] Multimodal deep learning model for Covid-19 detection
    Issahaku, Fadilul-lah Yassaanah
    Liu, Xiangwei
    Lu, Ke
    Fang, Xianwen
    Danwana, Sumaiya Bashiru
    Asimeng, Ernest
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 91
  • [36] Deep Learning and Classification Algorithms for COVID-19 Detection
    Sidheeque, Mohammed
    Sumathy, P.
    Gafur, Abdul M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 346 - 350
  • [37] COVID-19 Automatic Detection Using Deep Learning
    Sanajalwe, Yousef
    Anbar, Mohammed
    Al-E'mari, Salam
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (01): : 15 - 35
  • [38] A survey on deep learning models for detection of COVID-19
    Javad Mozaffari
    Abdollah Amirkhani
    Shahriar B. Shokouhi
    Neural Computing and Applications, 2023, 35 : 16945 - 16973
  • [39] COVID-19 Disease Prediction Using Weighted Ensemble Transfer Learning
    Roy, Pradeep Kumar
    Singh, Ashish
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (01): : 13 - 22
  • [40] Deep Learning Approach for Analysis and Characterization of COVID-19
    Kumar, Indrajeet
    Alshamrani, Sultan S.
    Kumar, Abhishek
    Rawat, Jyoti
    Singh, Kamred Udham
    Rashid, Mamoon
    AlGhamdi, Ahmed Saeed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 451 - 468