Inverse spinel cobalt manganese oxide nanosphere materials as an electrode for high-performance asymmetric supercapacitor

被引:11
|
作者
Shahanas, T. [1 ]
Yesuraj, J. [2 ,3 ]
Harichandran, G. [1 ]
Muthuraaman, B. [2 ]
Kim, Kibum [3 ]
机构
[1] Univ Madras, Dept Polymer Sci, Guindy Campus, Chennai 600025, India
[2] Univ Madras, Dept Energy, Guindy Campus, Chennai 600025, India
[3] Chungbuk Natl Univ, Dept Mech Engn, Cheongju 28644, South Korea
关键词
Cobalt manganese oxide nanosphere; Hydrothermal; Spinel structure; Energy storage materials; Supercapacitors; REDUCED GRAPHENE OXIDE; LAYERED DOUBLE HYDROXIDE; FACILE SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; NANOSTRUCTURES; NANOPARTICLES; STORAGE; MNCO2O4; PSEUDOCAPACITOR;
D O I
10.1016/j.jallcom.2022.167645
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In energy storage devices, it is critical to further develop spinel structured functional materials with rich redox-active sites and high theoretical capacitance. In this study, the nanosphere-shaped Cobalt Manganese Oxide inverse spinel structure was prepared by polyvinylpyrrolidone-assisted hydrothermal technique followed by calcination at 300 degrees C. Benefitting from the small nanosphere architecture, the Cobalt Manganese Oxide exhibits a high specific surface area to offer more redox-active sites and has a highly porous nature to shorten the ion movement pathway. The obtained Cobalt Manganese Oxide nanospheres exhibit a battery-like energy storage mechanism with a specific capacity (580 C g-1 at 5 mV s-1), high rate capability, and long-term cyclic stability performance (91.2% at 100 mV s-1 for 5000 cycles) in 6 M KOH electrolyte. The fabricated asymmetric supercapacitor device displays a high energy density of 29.1 Wh kg-1 at a power density of 320 W kg-1, and a power density of 3840 W kg-1 at an energy density of 4.4 Wh kg-1 with cyclic stability of 96.5% after 10,000 galvanostatic charge/discharge (GCD) cycles. The electronic structural properties explain density functional theory (DFT).(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Cobalt oxide composites derived from zeolitic imidazolate framework for high-performance supercapacitor electrode
    Zeyu Sun
    Feng Huang
    Yanwei Sui
    Fuxiang Wei
    Jiqiu Qi
    Qingkun Meng
    Haihua Hu
    Yezeng He
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 14019 - 14025
  • [22] Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor
    Guijing Liu
    Yanying Shi
    Lei Wang
    Yadong Song
    Shanmin Gao
    Dong Liu
    Leqing Fan
    Carbon Letters, 2020, 30 : 389 - 397
  • [23] High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam
    Shulan Jiang
    Tielin Shi
    Hu Long
    Yongming Sun
    Wei Zhou
    Zirong Tang
    Nanoscale Research Letters, 9
  • [24] A Cobalt-Based Metal-Organic Framework Nanosheet as the Electrode for High-Performance Asymmetric Supercapacitor
    Liu, Qian
    Guo, Zengqi
    Wang, Cong
    Guo, Su
    Xu, Zhiwei
    Hu, Chenguang
    Liu, Yujing
    Wang, Yalei
    He, Jun
    Wong, Wai-Yeung
    ADVANCED SCIENCE, 2023, 10 (18)
  • [25] Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor
    Liu, Guijing
    Shi, Yanying
    Wang, Lei
    Song, Yadong
    Gao, Shanmin
    Liu, Dong
    Fan, Leqing
    CARBON LETTERS, 2020, 30 (04) : 389 - 397
  • [26] High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam
    Jiang, Shulan
    Shi, Tielin
    Long, Hu
    Sun, Yongming
    Zhou, Wei
    Tang, Zirong
    NANOSCALE RESEARCH LETTERS, 2014, 9
  • [27] High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes
    Singh, Ashutosh K.
    Sarkar, Debasish
    Karmakar, Keshab
    Mandal, Kalyan
    Khan, Gobinda Gopal
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (32) : 20786 - 20792
  • [28] Bismuth iron manganese oxide nanocomposite for high performance asymmetric supercapacitor
    Ali, Dilawar
    Ashiq, Fazila
    Muneer, Iqra
    Fahad, H. M.
    Waheed, Anjam
    Butt, M. Z.
    Ahmad, Riaz
    Wee, M. F. Mohd Razip
    ELECTROCHIMICA ACTA, 2023, 464
  • [29] Carbon Nanotube-Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials
    Singu, Bal Sydulu
    Goda, Emad S.
    Yoon, Kuk Ro
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 97 : 239 - 249
  • [30] Manganese cobalt oxide-polythiophene composite for asymmetric supercapacitor
    Redekar, R.S.
    Patil, S.S.
    Patil, P.S.
    Tarwal, N.L.
    Chemical Engineering Journal, 2025, 503