Effects of Cu/Si on the microstructure and tribological properties of FeCoCrNi high entropy alloy coating by laser cladding

被引:99
|
作者
Zhu, Zheng-Xing [1 ]
Liu, Xiu-Bo [1 ,2 ]
Liu, Yi-Fan [1 ]
Zhang, Shi-Yi [1 ]
Meng, Yuan [1 ]
Zhou, Hai-Bin [1 ]
Zhang, Shi-Hong [2 ]
机构
[1] Cent South Univ Forestry & Technol, Hunan Prov Key Lab Mat Surface Interface Sci & Tec, Changsha 410004, Peoples R China
[2] Anhui Univ Technol, Key Lab Green Fabricat & Surface Technol Adv Met M, Minist Educ, Maanshan 243002, Peoples R China
基金
中国国家自然科学基金;
关键词
High entropy alloy coating; Tribological behavior; Microstructure; Laser cladding; Cu/Si addition; OXIDATION; TEM; IRRADIATION; BEHAVIOR; STRAIN; WEAR; SIZE; XRD;
D O I
10.1016/j.wear.2022.204533
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
High entropy alloy coatings show great potential for improving the wear resistance of the stainless-steel substrate. However, there are few comparative studies on the tribological properties of high entropy alloy coatings with different elements. In the present study, the FeCoCrNiCux and FeCoCrNiSix high entropy alloy coatings were designed and prepared by laser cladding. The microstructures of the high entropy coating were analyzed. The tribological properties of the high entropy alloy coatings sliding against Si3N4 balls at room temperature and 600 degrees C were investigated. The results show that after adding Cu/Si, the tribological properties of the coating change little at room temperature, but increased significantly at high temperature of 600 degrees C. The FeCoCrNiSi coating has the best tribological performance at 600 degrees C with an average friction coefficient and wear rate of 0.19 and 0.677 (x10(-)(4) mm(3)/N.m), respectively. In general, the addition of Cu increases the thermal conduction ability of the coating, improves the toughness and the bonding strength of the coating; the addition of Si refines the grain size, increases the degree of work hardening and improves the wear resistance of the coating.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Microstructure and high temperature tribological properties of laser cladding FeCoCrNi-based high-entropy alloy coatings
    Zhu Z.
    Liu X.
    Liu Y.
    Meng Y.
    Zhou H.
    Zhang S.
    Cailiao Gongcheng/Journal of Materials Engineering, 2023, 51 (03): : 78 - 88
  • [2] Microstructure and properties of high entropy alloy coating obtained by laser cladding
    Lu, Di
    Cui, Xiangcheng
    Zhang, Jinwen
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [3] Microstructure and properties of laser cladding high entropy alloy MoFeCrTiWAlxSiy coating
    An, X. (anxulongaaa@126.com), 1600, Chinese Society of Astronautics (43):
  • [4] Microstructure and Wide Temperature Range Tribological Properties of CoCrFeNiTi High-Entropy Alloy Coating by Laser Cladding
    Liu, Hao
    Xu, Qiansheng
    Wang, Linwei
    Chen, Peijian
    Liu, Xinhua
    Gao, Qiang
    Hao, Jingbin
    Yang, Haifeng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025, 34 (02) : 1515 - 1525
  • [5] Microstructure and Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding
    Liu, Hao
    Gao, Qiang
    Man, Jiaxiang
    Li, Xiaojia
    Yang, Haifeng
    Hao, Jingbin
    Zhongguo Jiguang/Chinese Journal of Lasers, 2022, 49 (08):
  • [6] Microstructure and Properties of CoCrFeMnNiTi, High-Entropy Alloy Coating by Laser Cladding
    Liu Hao
    Gao Qiang
    Man Jiaxiang
    Li Xiaojia
    Yang Haifeng
    Hao Jingbin
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (08):
  • [7] Microstructure and properties of laser cladding CoCrFeNiSix high-entropy alloy coating
    Hao W.-J.
    Sun R.-L.
    Niu W.
    Tan J.-H.
    Li X.-L.
    Surface Technology, 2021, 50 (05): : 87 - 94
  • [8] Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding
    Tian Z.
    Li X.
    Qin Z.
    Yang X.
    Liu W.
    Zhang P.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2022, 43 (12): : 53 - 63
  • [9] Effects of annealing on microstructure and properties of FeCrNiCoMn high-entropy alloy coating prepared by laser cladding
    Weng, Ziqing
    Dong, Gang
    Zhang, Qunli
    Guo, Shirui
    Yao, Jianhua
    Zhongguo Jiguang/Chinese Journal of Lasers, 2014, 41 (03):