Intelligent and secure real-time auto-stop car system using deep-learning models

被引:0
|
作者
Ahmed, Hiba Ali [1 ]
Al-hayanni, Mohammed A. Noaman [2 ]
Croock, Muayad Sadik [1 ]
机构
[1] Univ Technol Iraq, Dept Control & Syst Engn, Baghdad, Iraq
[2] Univ Technol Iraq, Dept Elect Engn, Baghdad, Iraq
关键词
auto-stop car system; CNN; deep learning; drowsiness recognition; face recognition; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
- In this study, we introduce an innovative auto-stop car system empowered by deep learning technology, specifically employing two Convolutional Neural Networks (CNNs) for face recognition and travel drowsiness detection. Implemented on a Raspberry Pi 4, our system is designed to cater exclusively to certified drivers, ensuring enhanced safety through intelligent features. The face recognition CNN model accurately identifies authorized drivers, employing deep learning techniques to verify their identity before granting access to vehicle functions. This first model demonstrates a remarkable accuracy rate of 99.1%, surpassing existing solutions in secure driver authentication. Simultaneously, our second CNN focuses on real-time detecting+ of driver drowsiness, monitoring eye movements, and utilizing a touch sensor on the steering wheel. Upon detecting signs of drowsiness, the system issues an immediate alert through a speaker, initiating an emergency park and sending a distress message via Global Positioning System (GPS). The successful implementation of our proposed system on the Raspberry Pi 4, integrated with a real-time monitoring camera, attains an impressive accuracy of 99.1% for both deep learning models. This performance surpasses current industry benchmarks, showcasing the efficacy and reliability of our solution. Our auto-stop car system advances user convenience and establishes unparalleled safety standards, marking a significant stride in autonomous vehicle technology.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 50 条
  • [41] Real-time Pedestrian Warning System on Highway using Deep Learning Methods
    He, Xin
    Zeng, Delu
    2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 701 - 706
  • [42] An IoT-Based Real-Time Intelligent Irrigation System using Machine Learning
    Shahriar, Saleh Mohammed
    Peyal, Hasibul Islam
    Nahiduzzaman, Md
    Pramanik, Md Abu Hanif
    PROCEEDINGS OF 2021 13TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEM (ICTS), 2021, : 277 - 281
  • [43] Real-time Yoga recognition using deep learning
    Yadav, Santosh Kumar
    Singh, Amitojdeep
    Gupta, Abhishek
    Raheja, Jagdish Lal
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 9349 - 9361
  • [44] Real-time temperature nowcasting using deep learning models across multiple locations
    Zaka, Farwa
    Nafisah, Ibrahim A.
    Lin, Jianyi
    Almazah, Mohammed M. A.
    Hussain, Ijaz
    Almazroui, Mansour
    Chakrabortty, Rabin
    Louati, Hanen
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (03)
  • [45] Real-time Yoga recognition using deep learning
    Santosh Kumar Yadav
    Amitojdeep Singh
    Abhishek Gupta
    Jagdish Lal Raheja
    Neural Computing and Applications, 2019, 31 : 9349 - 9361
  • [46] Real-Time Classification of Earthquake using Deep Learning
    Kuyuk, H. Serdar
    Susumu, Ohno
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 298 - 305
  • [47] Real-time Facemask Recognition Using Deep Learning
    Sasikumar, R.
    Shanmugaraja, P.
    Kailash, K.
    Reddy, M. Prudhvi Charan
    Jagadeesh, S. Nikhil
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 2079 - 2085
  • [48] Deep-Learning Dose Prediction as First Step Toward Real-Time Adaptive Replanning
    Buchanan, L.
    Chen, Z.
    Xhang, W.
    Zhou, Q.
    Schott, D.
    Li, X.
    MEDICAL PHYSICS, 2020, 47 (06) : E599 - E599
  • [49] Real-time traffic sign recognition based on a general purpose GPU and deep-learning
    Lim, Kwangyong
    Hong, Yongwon
    Choi, Yeongwoo
    Byun, Hyeran
    PLOS ONE, 2017, 12 (03):
  • [50] Autonomous Robotic Manipulation: Real-Time, Deep-Learning Approach for Grasping of Unknown Objects
    Sayour, Malak H.
    Kozhaya, Sharbel E.
    Saab, Samer S.
    JOURNAL OF ROBOTICS, 2022, 2022