Despite rapid advancements over the past several years, the conditional generative adversarial networks (cGANs) are still far from being perfect. Although one of the major concerns of the cGANs is how to provide the conditional information to the generator, there are not only no ways considered as the optimal solution but also a lack of related research. This brief presents a novel convolution layer, called the conditional convolution (cConv) layer, which incorporates the conditional information into the generator of the generative adversarial networks (GANs). Unlike the most general framework of the cGANs using the conditional batch normalization (cBN) that transforms the normalized feature maps after convolution, the proposed method directly produces conditional features by adjusting the convolutional kernels depending on the conditions. More specifically, in each cConv layer, the weights are conditioned in a simple but effective way through filter-wise scaling and channel-wise shifting operations. In contrast to the conventional methods, the proposed method with a single generator can effectively handle condition-specific characteristics. The experimental results on CIFAR, LSUN, and ImageNet datasets show that the generator with the proposed cConv layer achieves a higher quality of conditional image generation than that with the standard convolution layer.
机构:
Virginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
Harvard Med Sch, Brigham & Womens Hosp, Channing Div Network Med, Boston, MA 02115 USAVirginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
Song, Qi
Lee, Jiyoung
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USAVirginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
Lee, Jiyoung
Akter, Shamima
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Sch Plant & Environm Sci, Blacksburg, VA 24061 USAVirginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
Akter, Shamima
Rogers, Matthew
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Stat, Blacksburg, VA 24061 USAVirginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
Rogers, Matthew
Grene, Ruth
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
Virginia Tech, Sch Plant & Environm Sci, Blacksburg, VA 24061 USAVirginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
Grene, Ruth
Li, Song
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
Virginia Tech, Sch Plant & Environm Sci, Blacksburg, VA 24061 USAVirginia Tech, Grad Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
机构:
Univ Michigan Hlth Syst, Dept Phys Med & Rehabil, Div Rehabil Psychol & Neuropsychol, Ann Arbor, MI 48109 USAUniv Michigan Hlth Syst, Dept Phys Med & Rehabil, Div Rehabil Psychol & Neuropsychol, Ann Arbor, MI 48109 USA
Geisser, Michael E.
Kratz, Anna L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan Hlth Syst, Dept Phys Med & Rehabil, Div Rehabil Psychol & Neuropsychol, Ann Arbor, MI 48109 USAUniv Michigan Hlth Syst, Dept Phys Med & Rehabil, Div Rehabil Psychol & Neuropsychol, Ann Arbor, MI 48109 USA
机构:
Univ Penn, Dept Family Practice & Community Med, Philadelphia, PA 19104 USAUniv Penn, Dept Family Practice & Community Med, Philadelphia, PA 19104 USA
Bogner, HR
Gallo, JJ
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Family Practice & Community Med, Philadelphia, PA 19104 USAUniv Penn, Dept Family Practice & Community Med, Philadelphia, PA 19104 USA