Exergy assessment of an Organic Rankine Cycle for waste heat recovery from a refrigeration system: a review

被引:7
|
作者
Malwe, Prateek [1 ]
Gawali, Bajirao [1 ]
Shaikh, Juned [1 ]
Deshpande, Mayur [1 ]
Dhalait, Rustam [1 ]
Kulkarni, Shivani [1 ]
Shindagi, Vaishnavi [1 ]
Panchal, Hitesh [2 ]
Sadasivuni, Kishor Kumar [3 ]
机构
[1] Shivaji Univ, Walchand Coll Engn Sangli, Dept Mech Engn, Kolhapur, Maharashtra, India
[2] Govt Engn Coll, Dept Mech Engn, Katpur, Gujarat, India
[3] Qatar Univ, Ctr Adv Mat, Doha, Qatar
关键词
Energy; exergy analysis; exergy destruction; organic Rankine cycle; vapor compression refrigeration system; waste energy; WORKING FLUID; ORC; ENGINE; OPTIMIZATION; DESIGN; PERFORMANCE; COMBUSTION; SELECTION; EXPANDER; GAS;
D O I
10.1080/00986445.2021.1980396
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The increased use of fossil fuels in the industry has resulted in severe environmental issues, such as ozone depletion, air pollution, and climate change, among others. Due to diverse resources, such as biomass, solar radiation, and so on, approximately half of the energy produced worldwide is discarded as heat. Utilizing this waste energy as heat reduces fuel usage, reduces carbon dioxide (CO2) emissions, and improves overall system performance. The Organic Rankine Cycle (ORC) is the most efficient and reliable method of converting waste heat from low and medium temperatures into usable power. Exergy refers to the maximum amount of work a system can perform in any state and any environment. Engineers are employing exergy analysis to optimize every system, according to recent research. It comprises assessing and improving system performance utilizing exergy basics, equation balance, and exergy efficiencies. It also facilitates identifying critical sources of exergy loss, which may subsequently be targeted for reduction. This study provides an overview of the exergetic assessment of vapor compression refrigeration systems (VCRS) utilizing ORC. The thermodynamic, environmental, and selection features of 29 different organic fluids, as well as their selection corresponding to the heat source temperatures, are all discussed in this article. The findings of this research include a comparison of these refrigerants under various operating conditions. The primary purpose of this research is to provide a full ORC review for discarded heat retrieval from a refrigeration system, which includes benchmarks for working fluid selection and the impact of operating limits.
引用
收藏
页码:837 / 865
页数:29
相关论文
共 50 条
  • [41] Radial Expander Design for an Engine Organic Rankine Cycle Waste Heat Recovery System
    Alshammari, Fuhaid
    Karvountzis-Kontakiotis, A.
    Pesiridis, A.
    Minton, Timothy
    4TH INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS, 2017, 129 : 285 - 292
  • [42] Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery
    Wei, Donghong
    Lu, Xuesheng
    Lu, Zhen
    Gu, Jianming
    APPLIED THERMAL ENGINEERING, 2008, 28 (10) : 1216 - 1224
  • [43] Hybrid Electric Vehicle Performance with Organic Rankine Cycle Waste Heat Recovery System
    Andwari, Amin Mahmoudzadeh
    Pesiridis, Apostolos
    Karvountzis-Kontakiotis, Apostolos
    Esfahanian, Vahid
    APPLIED SCIENCES-BASEL, 2017, 7 (05):
  • [44] Dynamic modeling and optimization of organic Rankine cycle in the waste heat recovery of the hydraulic system
    Gu, Zhengzhao
    Feng, Kewen
    Ge, Lei
    Quan, Long
    ENERGY, 2023, 263
  • [45] Modeling of a Combined Kalina and Organic Rankine Cycle System for Waste Heat Recovery from Biogas Engine
    Oksel, Cem
    Koc, Ali
    SUSTAINABILITY, 2022, 14 (12)
  • [46] Performance Analysis of a Coupled System based on Organic Rankine Cycle and Double Effect Absorption Refrigeration for Waste Heat Recovery in Data Center
    Li, Peng
    Xu, Jiaqi
    Wang, Binbin
    Liu, Jianyang
    Zhao, Wensheng
    Han, Zhonghe
    JOURNAL OF THERMAL SCIENCE, 2025, 34 (01) : 188 - 205
  • [47] Performance Analysis of a Coupled System based on Organic Rankine Cycle and Double Effect Absorption Refrigeration for Waste Heat Recovery in Data Center
    LI Peng
    XU Jiaqi
    WANG Binbin
    LIU Jianyang
    ZHAO Wensheng
    HAN Zhonghe
    Journal of Thermal Science, 2025, 34 (01) : 188 - 205
  • [48] Thermodynamic analysis of waste heat recovery from hybrid system of proton exchange membrane fuel cell and vapor compression refrigeration cycle by recuperative organic Rankine cycle
    Mohamad Alijanpour Sheshpoli
    Seyed Soheil Mousavi Ajarostaghi
    Mojtaba Aghajani Delavar
    Journal of Thermal Analysis and Calorimetry, 2019, 135 : 1699 - 1712
  • [49] Thermodynamic analysis of waste heat recovery from hybrid system of proton exchange membrane fuel cell and vapor compression refrigeration cycle by recuperative organic Rankine cycle
    Sheshpoli, Mohamad Alijanpour
    Ajarostaghi, Seyed Soheil Mousavi
    Delavar, Mojtaba Aghajani
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (03) : 1699 - 1712
  • [50] Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines
    Carcasci, Carlo
    Ferraro, Riccardo
    Miliotti, Edoardo
    ENERGY, 2014, 65 : 91 - 100