The collapse of a sonoluminescent cavitation bubble imaged with X-ray free-electron laser pulses

被引:2
|
作者
Hoeppe, Hannes P. [1 ]
Osterhoff, Markus [1 ]
Maleki, Atiyeh Aghel [2 ]
Rossello, Juan M. [2 ,3 ]
Vassholz, Malte [1 ]
Hagemann, Johannes [4 ,5 ]
Engler, Thea [4 ,5 ]
Schwarz, Daniel [5 ]
Rodriguez-Fernandez, Angel [6 ]
Boesenberg, Ulrike [6 ]
Moeller, Johannes [6 ]
Shayduk, Roman [6 ]
Hallmann, Joerg [6 ]
Madsen, Anders [6 ]
Mettin, Robert [2 ]
Salditt, Tim [1 ]
机构
[1] Georg August Univ Gottingen, Inst Rontgenphys, D-37077 Gottingen, Germany
[2] Georg August Univ Gottingen, Drittes Phys Inst, D-37077 Gottingen, Germany
[3] Univ Ljubljana, Fac Mech Engn, SVN-1000 Ljubljana, Slovenia
[4] Deutsch Elektronen Synchrotron DESY, Helmholtz Imaging Platform, D-22607 Hamburg, Germany
[5] Deutsch Elektronen Synchrotron DESY, CXNSCtr Xray & Nano Sci, D-22607 Hamburg, Germany
[6] European Xray Free Electron Laser Facil, D-22869 Schenefeld, Germany
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 03期
关键词
x-ray holography; single-bubble sonoluminescence; bubble collapse dynamics; acoustic trap; single-pulse imaging; x-ray free-electron laser; MIE SCATTERING; SINGLE; DYNAMICS; EMISSIONS;
D O I
10.1088/1367-2630/ad295b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single bubble sonoluminescence (SBSL) is the phenomenon of synchronous light emission due to the violent collapse of a single spherical bubble in a liquid, driven by an ultrasonic field. During the bubble collapse, matter inside the bubble reaches extreme conditions of several gigapascals and temperatures on the order of 10000 K, leading to picosecond flashes of visible light. To this day, details regarding the energy focusing mechanism rely on simulations due to the fast dynamics of the bubble collapse and spatial scales below the optical resolution limit. In this work we present phase-contrast holographic imaging with single x-ray free-electron laser (XFEL) pulses of a SBSL cavitation bubble in water. X-rays probe the electron density structure and by that provide a uniquely new view on the bubble interior and its collapse dynamics. The involved fast time-scales are accessed by sub-100 fs XFEL pulses and a custom synchronization scheme for the bubble oscillator. We find that during the whole oscillation cycle the bubble's density profile can be well described by a simple step-like structure, with the radius R following the dynamics of the Gilmore model. The quantitatively measured internal density and width of the boundary layer exhibit a large variance. Smallest reconstructed bubble sizes reach down to R similar or equal to 0.8 mu m , and are consistent with spherical symmetry. While we here achieved a spatial resolution of a few 100 nm, the visibility of the bubble and its internal structure is limited by the total x-ray phase shift which can be scaled with experimental parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Influence of Diffraction in Crystals on the Coherence Properties of X-Ray Free-Electron Laser Pulses
    Bushuev, V. A.
    Samoylova, L.
    CRYSTALLOGRAPHY REPORTS, 2011, 56 (05) : 819 - 827
  • [22] Influence of diffraction in crystals on the coherence properties of X-ray free-electron laser pulses
    V. A. Bushuev
    L. Samoylova
    Crystallography Reports, 2011, 56 : 819 - 827
  • [23] Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses
    Nass, Karol
    Gorel, Alexander
    Abdullah, Malik M.
    Martin, Andrew, V
    Kloos, Marco
    Marinelli, Agostino
    Aquila, Andrew
    Barends, Thomas R. M.
    Decker, Franz-Josef
    Doak, R. Bruce
    Foucar, Lutz
    Hartmann, Elisabeth
    Hilpert, Mario
    Hunter, Mark S.
    Jurek, Zoltan
    Koglin, Jason E.
    Kozlov, Alexander
    Lutman, Alberto A.
    Kovacs, Gabriela Nass
    Roome, Christopher M.
    Shoeman, Robert L.
    Santra, Robin
    Quiney, Harry M.
    Ziaja, Beata
    Boutet, Sebastien
    Schlichting, Ilme
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [24] Unusual Features of Diffraction in Crystals of Femtosecond Pulses of the X-Ray Free-Electron Laser
    Bushuev, V. A.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2010, 32 (01): : 23 - 31
  • [25] Effect of the thermal heating of a crystal on the diffraction of pulses of a free-electron X-ray laser
    V. A. Bushuev
    Bulletin of the Russian Academy of Sciences: Physics, 2013, 77 (1) : 15 - 20
  • [26] Attosecond X-ray pulses from free-electron lasers
    Zholents, AA
    LASER PHYSICS, 2005, 15 (06) : 855 - 862
  • [27] Attosecond time-energy structure of X-ray free-electron laser pulses
    Hartmann, N.
    Hartmann, G.
    Heider, R.
    Wagner, M. S.
    Ilchen, M.
    BucK, J.
    Lindahl, A. O.
    Benko, C.
    Gruenert, J.
    Krzywinski, J.
    Liu, J.
    Lutman, A. A.
    Marinelli, A.
    Maxwell, T.
    Miahnahri, A. A.
    Moeller, S. P.
    Planas, M.
    Robinson, J.
    Kazansky, A. K.
    Kabachnik, N. M.
    Viefhaus, J.
    Feurer, T.
    Kienberger, R.
    Coffee, R. N.
    Helml, W.
    NATURE PHOTONICS, 2018, 12 (04) : 215 - +
  • [28] Numerical simulations of dynamically diffracted ultrashort x-ray free-electron laser pulses
    Zambianchi, P
    Shastri, SD
    Mills, DM
    OPTICS FOR FOURTH-GENERATION X-RAY SOURCES, 2001, 4500 : 75 - 88
  • [29] Demonstration of Large Bandwidth Hard X-Ray Free-Electron Laser Pulses at SwissFEL
    Prat, Eduard
    Dijkstal, Philipp
    Ferrari, Eugenio
    Reiche, Sven
    PHYSICAL REVIEW LETTERS, 2020, 124 (07)
  • [30] Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses
    Karol Nass
    Alexander Gorel
    Malik M. Abdullah
    Andrew V. Martin
    Marco Kloos
    Agostino Marinelli
    Andrew Aquila
    Thomas R. M. Barends
    Franz-Josef Decker
    R. Bruce Doak
    Lutz Foucar
    Elisabeth Hartmann
    Mario Hilpert
    Mark S. Hunter
    Zoltan Jurek
    Jason E. Koglin
    Alexander Kozlov
    Alberto A. Lutman
    Gabriela Nass Kovacs
    Christopher M. Roome
    Robert L. Shoeman
    Robin Santra
    Harry M. Quiney
    Beata Ziaja
    Sébastien Boutet
    Ilme Schlichting
    Nature Communications, 11