On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations

被引:3
|
作者
Chen, Ting [1 ]
Zi, Ruizhao [2 ,3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Cent China Normal Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R China
关键词
MHD equations; Couette flow; stability; GLOBAL WELL-POSEDNESS; ALFVEN WAVES; PLASMA; BEHAVIOR;
D O I
10.1017/prm.2024.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magneticfield (alpha,0)(T)on TxR. More precisely, for sufficiently large alpha, we show that when the initial datum of the shear flow satisfies & Vert;U(y)-y & Vert;HN+6 << 1, with N>1, and the initial perturbationsu in and b(in) satisfy & Vert;(u(in),b(in))& Vert;HN+1=<<nu 5/(6)+ delta for any fixed delta>0, then the solution of the 2D MHD equations remains nu-((1)/(3)+ (delta)/(2))is an element of-close to(e(nu t partial derivative yy)U(y),0)(T)for allt>0.
引用
收藏
页数:51
相关论文
共 50 条