Enhancement of hydrogen production in steam gasification of sludge: Comparing different strategies for deeper conversion of hydrogen sources in biomass

被引:7
|
作者
Gao, Ying [1 ]
Wang, Yuang [1 ]
Jiang, Yue [1 ]
Guo, Yuan [1 ]
Xu, Jiayu [1 ,2 ]
Ran, Shuai [1 ]
Qian, Kezhen [3 ]
Zhang, Hong [4 ]
Xu, Hui [1 ]
Yang, Hui Ying [5 ]
机构
[1] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Peoples R China
[3] Tongji Univ, Sch Mech & Energy Engn, Shanghai 200092, Peoples R China
[4] Nanjing Forestry Univ, Nanjing 210037, Peoples R China
[5] Singapore Univ Technol & Design, Pillar Engn Prod Dev, Singapore 487372, Singapore
关键词
Sludge; Biomass; Hydrogen; Gasification; Hydrothermal; CATALYTIC GASIFICATION; RICH GAS; BIO-OIL; TAR; OLIVINE; PYROLYSIS; SYNGAS; LIGNIN; TOLUENE;
D O I
10.1016/j.energy.2023.129197
中图分类号
O414.1 [热力学];
学科分类号
摘要
Biomass has significant advantages in the gasification process but is frequently hampered by low hydrogen production. In this study, sludge and hydrothermal aqueous phase (HTAP) were selected as biomass substrates to provide a plentiful source of organic hydrogen for gasification, and different strategies for deeper conversion of hydrogen sources and higher hydrogen production were compared. Solid acid catalysts were used to alter the distribution of organic hydrogen sources in biomass substrates. Ni-ore-based catalysts were used to directly catalyze the gasification process. The results showed that nickel-ore-based catalysts exhibited a much higher contribution to hydrogen production. The solid acid catalyst resulted in the dissociation of methyl and methoxy on the side chain of HTAP, and the transfer of hydrogen source affects the subsequent hydrogen production. And Ni-ore-based catalysts efficiently can convert the hydrogen sources in tar into valuable gas. The Ni-ore-based catalysts achieved up to 62.07% increase in hydrogen production from gasification. This study elucidates the underlying mechanistic issues of the proposed strategies to produce hydrogen from gasification and provides a deeper understanding of the efficient utilization of hydrogen sources in biomass.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Inhibition of steam gasification of biomass char by hydrogen and tar
    Fushimi, Chihiro
    Wada, Tomoko
    Tsutsumi, Atsushi
    BIOMASS & BIOENERGY, 2011, 35 (01): : 179 - 185
  • [32] Effect of iron on the gasification of Victorian brown coal with steam: enhancement of hydrogen production
    Yu, JL
    Tian, FJ
    Chow, MC
    McKenzie, LJ
    Li, CZ
    FUEL, 2006, 85 (02) : 127 - 133
  • [33] Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents
    Shayan, E.
    Zare, V.
    Mirzaee, I.
    ENERGY CONVERSION AND MANAGEMENT, 2018, 159 : 30 - 41
  • [34] Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge
    Li, Hanhui
    Chen, Zhihua
    Huo, Chan
    Hu, Mian
    Guo, Dabin
    Xiao, Bo
    ENERGY CONVERSION AND MANAGEMENT, 2015, 106 : 1212 - 1218
  • [35] Hydrogen -rich syngas production via sorption -enhanced steam gasification of sewage sludge
    Chen, Shiyi
    Zhao, Zhenghao
    Soomro, Ahsanullah
    Ma, Shiwei
    Wu, Mudi
    Sun, Zhao
    Xiang, Wenguo
    BIOMASS & BIOENERGY, 2020, 138
  • [36] Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system
    Xiao, Yahui
    Xu, Shaoping
    Song, Yangbo
    Shan, Yiyuan
    Wang, Chao
    Wang, Guangyong
    FUEL PROCESSING TECHNOLOGY, 2017, 165 : 54 - 61
  • [37] Steam gasification of marine biomass and its biochars for hydrogen-rich gas production
    Anniwaer, Aisikaer
    Yu, Tao
    Chaihad, Nichaboon
    Situmorang, Yohanes Andre
    Wang, Chao
    Kasai, Yutaka
    Abudula, Abuliti
    Guan, Guoqing
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (10) : 8641 - 8650
  • [38] Steam-gasification of biomass with CaO as catalyst for hydrogen-rich syngas production
    Zhou, Liang
    Yang, Zhiyong
    Tang, Anjiang
    Huang, Hongsheng
    Wei, Deju
    Yu, Erlei
    Lu, Wei
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (06) : 1641 - 1646
  • [39] Effects of controlling parameters on production of hydrogen by catalytic steam gasification of biomass at low temperatures
    Moghtaderi, Behdad
    FUEL, 2007, 86 (15) : 2422 - 2430
  • [40] Exergoeconomic analysis of a hybrid system based on steam biomass gasification products for hydrogen production
    Abuadala, A.
    Dincer, I.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (20) : 12780 - 12793