An In-Depth Analysis of Domain Adaptation in Computer and Robotic Vision

被引:2
|
作者
Tanveer, Muhammad Hassan [1 ]
Fatima, Zainab [2 ]
Zardari, Shehnila [2 ]
Guerra-Zubiaga, David [1 ]
Troncossi, Marco
机构
[1] Kennesaw State Univ, Dept Robot & Mechatron Engn, Marietta, GA 30060 USA
[2] Ned Univ Engn & Technol, Dept Software Engn, Karachi 75270, Pakistan
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 23期
关键词
domain adaptation; computer vision; robotic vision; knowledge transfer; generalization; evaluation metrics; deep learning; cross-domain analysis; traditional methods; hybrid methods; data preprocessing; performance evaluation;
D O I
10.3390/app132312823
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This review article comprehensively delves into the rapidly evolving field of domain adaptation in computer and robotic vision. It offers a detailed technical analysis of the opportunities and challenges associated with this topic. Domain adaptation methods play a pivotal role in facilitating seamless knowledge transfer and enhancing the generalization capabilities of computer and robotic vision systems. Our methodology involves systematic data collection and preparation, followed by the application of diverse assessment metrics to evaluate the efficacy of domain adaptation strategies. This study assesses the effectiveness and versatility of conventional, deep learning-based, and hybrid domain adaptation techniques within the domains of computer and robotic vision. Through a cross-domain analysis, we scrutinize the performance of these approaches in different contexts, shedding light on their strengths and limitations. The findings gleaned from our evaluation of specific domains and models offer valuable insights for practical applications while reinforcing the validity of the proposed methodologies.
引用
收藏
页数:52
相关论文
共 50 条
  • [41] Low Rank Adaptation for Stable Domain Adaptation of Vision Transformers
    Filatov, N.
    Kindulov, M.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2023, 32 (Suppl 2) : S277 - S283
  • [42] Low Rank Adaptation for Stable Domain Adaptation of Vision Transformers
    N. Filatov
    M. Kindulov
    Optical Memory and Neural Networks, 2023, 32 : S277 - S283
  • [43] The Obesity Paradox in Sepsis: An In-Depth Analysis
    Pandey, M.
    Modi, D.
    Aashish, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [44] In-Depth Analysis of Pedestrian Crashes in Riyadh
    Al-Shammari, Naif
    Bendak, Salaheddine
    Al-Gadhi, Saad
    TRAFFIC INJURY PREVENTION, 2009, 10 (06) : 552 - 559
  • [45] Clinical governance: An in-depth scientometric analysis
    Adduci, Andrea
    Perilli, Alessio
    Durante, Francesca
    de Mattia, Egidio
    Cicchetti, Americo
    Ricciardi, Walter
    de Belvis, Antonio Giulio
    INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT, 2024, 17 (03) : 571 - 585
  • [46] In-depth analysis of thyroid cancer mortality
    LaBarge, Brandon
    Walter, Vonn
    Bann, Darrin, V
    Goldenberg, David
    HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2021, 43 (03): : 977 - 983
  • [47] In-depth Analysis of Interactive Digital Narrative
    Koenitz, Hartmut
    Haahr, Mads
    Ferri, Gabriele
    Sezen, Tonguc Ibrahim
    Sezen, Digdem
    INTERACTIVE STORYTELLING, ICIDS 2016, 2016, 10045 : 461 - 463
  • [48] In-depth resistome analysis by targeted metagenomics
    Lanza, Val F.
    Baquero, Fernando
    Luis Martinez, Jose
    Ramos-Ruiz, Ricardo
    Gonzalez-Zorn, Bruno
    Andremont, Antoine
    Sanchez-Valenzuela, Antonio
    Ehrlich, Stanislav Dusko
    Kennedy, Sean
    Ruppe, Etienne
    van Schaik, Willem
    Willems, Rob J.
    de la Cruz, Fernando
    Coque, Teresa M.
    MICROBIOME, 2018, 6
  • [49] An in-depth analysis of the RZ Piscium atmosphere
    Potravnov, I.S.
    Grinin, V.P.
    Ilyin, I.V.
    Shakhovskoy, D.N.
    1600, EDP Sciences (563):
  • [50] In-depth resistome analysis by targeted metagenomics
    Val F. Lanza
    Fernando Baquero
    José Luís Martínez
    Ricardo Ramos-Ruíz
    Bruno González-Zorn
    Antoine Andremont
    Antonio Sánchez-Valenzuela
    Stanislav Dusko Ehrlich
    Sean Kennedy
    Etienne Ruppé
    Willem van Schaik
    Rob J. Willems
    Fernando de la Cruz
    Teresa M. Coque
    Microbiome, 6