Vector Quantized Multi-modal Guidance for Alzheimer's Disease Diagnosis Based on Feature Imputation

被引:0
|
作者
Zhang, Yuanwang [1 ]
Sun, Kaicong [1 ]
Liu, Yuxiao [1 ]
Ou, Zaixin [1 ]
Shen, Dinggang [1 ,2 ,3 ]
机构
[1] ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
[2] Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
[3] Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
关键词
Discrete Learning; Multimodal Learning; Incomplete Modalities; Alzheimer's Disease; Classification; Feature Imputation; BRAIN PET;
D O I
10.1007/978-3-031-45673-2_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Magnetic Resonance Imaging (MRI) and positron emission tomography (PET) are the most used imaging modalities for Alzheimer's disease (AD) diagnosis in clinics. Although PET can better capture AD-specific pathologies than MRI, it is less used compared with MRI due to high cost and radiation exposure. Imputing PET images from MRI is one way to bypass the issue of unavailable PET, but is challenging due to severe ill-posedness. Instead, we propose to directly impute classification-oriented PET features and combine them with real MRI to improve the overall performance of AD diagnosis. In order to more effectively impute PET features, we discretize the feature space by vector quantization and employ transformer to perform feature transition between MRI and PET. Our model is composed of three stages including codebook generation, mapping construction, and classifier enhancement based on combined features. We employ paired MRI-PET data during training to enhance the performance of MRI data during inference. Experimental results on ADNI dataset including 1346 subjects show a boost in classification performance of MRI without requiring PET. Our proposed method also outperforms other state-of-the-art data imputation methods.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 50 条
  • [11] Multi-modal cross-attention network for Alzheimer's disease diagnosis with multi data
    Zhang, Jin
    He, Xiaohai
    Liu, Yan
    Cai, Qingyan
    Chen, Honggang
    Qing, Linbo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 162
  • [12] Diagnosis of Alzheimer's Disease by Canonical Correlation Analysis Based Fusion of Multi-Modal Medical Images
    Baninajjar, Anahita
    Soltanian-Zadeh, Hamid
    Rezaie, Sajad
    Mohammadi-Nejad, Ali-Reza
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [13] Alzheimer's disease prediction algorithm based on de-correlation constraint and multi-modal feature interaction
    Cheng, Jiayuan
    Wang, Huabin
    Wei, Shicheng
    Mei, Jiahao
    Liu, Fei
    Zhang, Gong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [14] DMSENet: Deep multi-modal squeeze and excitation network for the diagnosis of Alzheimer's disease
    Thushara, A.
    Saju, Reshma
    John, Ansamma
    Amma, UshaDevi C.
    INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT, 2022,
  • [15] Addressing the missing data challenge in multi-modal datasets for the diagnosis of Alzheimer?s disease
    Aghili, Maryamossadat
    Tabarestani, Solale
    Adjouadi, Malek
    JOURNAL OF NEUROSCIENCE METHODS, 2022, 375
  • [16] Unified Multi-modal Learning for Any Modality Combinations in Alzheimer's Disease Diagnosis
    Feng, Yidan
    Gao, Bingchen
    Deng, Sen
    Qiu, Anqi
    Qin, Jing
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT III, 2024, 15003 : 487 - 497
  • [17] Self-paced Learning for Multi-modal Fusion for Alzheimer's Disease Diagnosis
    Yuan, Ning
    Zhu, Qi
    Guan, Donghai
    Yuan, Weiwei
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 70 - 75
  • [18] Multi-Modal Diagnosis of Alzheimer's Disease Using Interpretable Graph Convolutional Networks
    Zhou, Houliang
    He, Lifang
    Chen, Brian Y.
    Shen, Li
    Zhang, Yu
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 142 - 153
  • [19] Sparse Interpretation of Graph Convolutional Networks for Multi-modal Diagnosis of Alzheimer's Disease
    Zhou, Houliang
    Zhang, Yu
    Chen, Brian Y.
    Shen, Li
    He, Lifang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 469 - 478
  • [20] Alzheimer's disease classification method based on multi-modal medical images
    Han K.
    Pan H.
    Zhang W.
    Bian X.
    Chen C.
    He S.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (08): : 664 - 671and682