Impurity and dispersion effects on the linear magnetoresistance in the quantum limit

被引:2
|
作者
Li, Shuai [1 ,2 ,3 ,4 ,5 ,6 ]
Lu, Hai-Zhou [2 ,3 ,4 ,5 ,6 ]
Xie, X. C. [7 ,8 ,9 ]
机构
[1] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China
[2] Southern Univ Sci & Technol SUSTech, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol SUSTech, Dept Phys, Shenzhen 518055, Peoples R China
[4] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Hong Kong 518045, Peoples R China
[5] Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[6] Int Quantum Acad, Shenzhen 518048, Peoples R China
[7] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[8] Fudan Univ, Inst Nanoelect Devices & Quantum Comp, Shanghai 200433, Peoples R China
[9] Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
DENSITY; STATES;
D O I
10.1103/PhysRevB.107.235202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetoresistance, that is, the change of the resistance with the magnetic field, is usually a quadratic function of the field strength. A linear magnetoresistance usually reveals extraordinary properties of a system. In the quantum limit where only the lowest Landau band is occupied, a quantum linear magnetoresistance was believed to be the signature of the Weyl fermions with 3D linear dispersion. Here, we comparatively investigate the quantum-limit magnetoresistance of systems with different band dispersions as well as different types of impurities. We find that the magnetoresistance can also be linear for the quadratic energy dispersion. We show that both longitudinal and transverse magnetoresistance can be linear if long-range-Gaussian-type impurities dominate, but Coulomb-type impurities can only induce linear transverse magnetoresistance. Our findings well explain some of the linear magnetoresistance observed in the experiments and provide insights to the understanding of quantum-limit magnetoresistance.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] QUANTUM-LIMIT MAGNETORESISTANCE FOR ACOUSTIC-PHONON SCATTERING
    ARORA, VK
    CASSIDAY, DR
    SPECTOR, HN
    PHYSICAL REVIEW B, 1977, 15 (12): : 5996 - 5998
  • [32] NEGATIVE MAGNETORESISTANCE IN INDIUM-ANTIMONIDE IN EXTREME QUANTUM LIMIT
    MANSFIELD, R
    ELLIS, T
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1976, 9 (20): : 3781 - 3788
  • [33] QUANTUM LIMIT BEHAVIOR OF MAGNETORESISTANCE IN NON-PARABOLIC SEMICONDUCTORS
    KOSSUT, J
    HAJDU, J
    SOLID STATE COMMUNICATIONS, 1978, 27 (12) : 1401 - 1403
  • [34] MAGNETORESISTANCE IN EXTREME QUANTUM LIMIT IN N-TYPE INSB
    KINCH, MA
    PHYSICS LETTERS A, 1967, A 24 (01) : 23 - &
  • [35] Impurity effects in quantum wires
    Gomez-Santos, G
    STRONGLY CORRELATED MAGNETIC AND SUPERCONDUCTING SYSTEMS, 1997, 478 : 261 - 274
  • [36] Quantum Linear Magnetoresistance in Multi layer Epitaxial Graphene
    Friedman, Adam L.
    Tedesco, Joseph L.
    Campbell, Paul M.
    Culbertson, James C.
    Aifer, Edward
    Perkins, F. Keith
    Myers-Ward, Rachael L.
    Hite, Jennifer K.
    Eddy, Charles R., Jr.
    Jernigan, Glenn G.
    Gaskill, D. Kurt
    NANO LETTERS, 2010, 10 (10) : 3962 - 3965
  • [37] On the linear dispersion-linear potential quantum oscillator
    Greiter, Martin
    ANNALS OF PHYSICS, 2010, 325 (07) : 1349 - 1358
  • [38] Dispersion of linear waves in quantum plasmas
    Ren, Haijun
    Wu, Zhengwei
    Chu, Paul K.
    PHYSICS OF PLASMAS, 2007, 14 (06)
  • [39] Linear positive magnetoresistance and quantum interference in ferromagnetic metals
    Gerber, A.
    Kishon, I.
    Korenblit, I. Ya.
    Riss, O.
    Segal, A.
    Karpovski, M.
    Raquet, B.
    PHYSICAL REVIEW LETTERS, 2007, 99 (02)
  • [40] Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures
    Assaf, B. A.
    Cardinal, T.
    Wei, P.
    Katmis, F.
    Moodera, J. S.
    Heiman, D.
    APPLIED PHYSICS LETTERS, 2013, 102 (01)