Ambiguous solutions of a Pell equation

被引:0
|
作者
Akbary, Amir [1 ]
Francis, Forrest J. [1 ,2 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB, Canada
[2] UNSW Canberra, Sch Sci, Canberra, Australia
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2023年 / 16卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
generalized Pell equation; ambiguous classes of solutions;
D O I
10.2140/involve.2023.16.13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that if the negative Pell equation X2 - DY2 = -1 is solvable (in integers), and if (x, y) is its solution with the smallest positive x and y, then all of its solutions (xn, yn) are given by the formula root root xn + yn D = +/-(x + y D)2n+1 for n is an element of 71. Furthermore, a theorem of Walker from 1967 states that if the equation a X2 -bY2 = +/- 1 is solvable, and if (x, y) is its solution with the smallest positive x and y, then all of its solutions (xn, yn) are given by root xn root a + yn root b = +/-(x root a + y b)2n+1 for n is an element of 71. We prove a unifying theorem that includes both of these results as spe-cial cases. The key observation is a structural theorem for the nontrivial ambigu-ous classes of the solutions of the (generalized) Pell equations X2 - DY2 = +/- N. We also provide a criterion for determination of the nontrivial ambiguous classes of the solutions of Pell equations.
引用
收藏
页码:13 / 25
页数:16
相关论文
共 50 条
  • [31] Dilogarithm identities for solutions to Pell’s equation in terms of continued fraction convergents
    Martin Bridgeman
    The Ramanujan Journal, 2021, 55 : 141 - 161
  • [32] A property of the generalized pell equation
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (07): : 658 - 659
  • [33] REDEI THEORY OF THE PELL EQUATION
    MORTON, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1979, 307 : 373 - 398
  • [34] Pell's equation and Fermat
    Dolan, Stan
    MATHEMATICAL GAZETTE, 2012, 96 (535): : 66 - 70
  • [35] MARKOFF EQUATION WITH PELL COMPONENTS
    Kafle, Bir
    Srinivasan, Anitha
    Togbe, Alain
    FIBONACCI QUARTERLY, 2020, 58 (03): : 226 - 230
  • [36] Polynomial Pell's equation
    Webb, WA
    Yokota, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) : 993 - 1006
  • [37] FINDING PRIME FACTORS WITH PELL EQUATION
    KOLLER, A
    SIEMENS FORSCHUNGS-UND ENTWICKLUNGSBERICHTE-SIEMENS RESEARCH AND DEVELOPMENT REPORTS, 1982, 11 (01): : 51 - 61
  • [38] Pell-Abel equation and applications
    Gendron, Quentin
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 975 - 992
  • [39] Assessment of the solution to the Pell equation.
    Perron, O
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1914, 144 (1/4): : 71 - 73
  • [40] The negative Pell equation and Pythagorean triples
    Grytczuk, A
    Luca, F
    Wójtowicz, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (06) : 91 - 94